季節内変動スケールの対流活動と循環場の関係(冬期)

遠藤洋和(仙台管区気象台気候・調査課)*原田やよい(気象庁気候情報課)

1.はじめに

季節内変動スケールの対流活動と循環場の関係につい ての研究はこれまでに数多く成されている。特に冬期の 季節内変動の時間スケールにおいては、赤道域を東進す る MJO (Madden Julian Oscillation) が支配的であるた め、これに伴う対流活動の変動と循環場の関連に焦点が あてられることが多い(たとえば Knutson and Weickmann, 1987)。MJO に伴う循環場の応答は、プロセスは複雑であ るが中・高緯度にも現れることがこれまで多くの研究か ら示されている(たとえばKnutson and Weickmann, 1987)。 加えて、MJO が中高緯度の循環場に一方的に影響を与える だけでなく、それらとの相互作用が MJO の位相が東進す る上で重要であると主張する研究もある(Meehl et al, 1996; Hsu, 1996)。MJOの位相と中緯度域の具体的な天候 要素との関連については、主にアメリカ大陸西岸におけ る極端な降水量の出現頻度との関連が調べられており、 統計的に有意な偏差が現れることが報告されている (Higgins et al., 2000; Jones, 2000; Bond and Vecchi, 2003)

現在,気象庁の発表する1か月予報は力学的数値予報 モデルをベースにして行われている。2週目以降および 月平均場の予測資料を解釈する上で MJOの東進に伴う循 環場の変動は無視できず、予報担当者はこれらの関係を 理解しておく必要がある。これまでに、冬期の季節内変 動スケールの対流活動と日本付近の循環場の関係につい ては河原ら(1989)や林と河原(1990)によって調べられて いるが、循環場データが500hPa高度に限られていること から、もう一度体系的に再調査する必要がある。すなわ ち、本調査は MJO による対流活動変動と循環場の関係の 概念モデルを作成することを目的とし、主に日本付近の 循環場や天候要素との関係に焦点を置く。作成された概 念モデルは予報担当者が実況および数値予報資料を物理 的に解釈や理解をする、および明らかにモデル内で MJO の東進が悪い場合に数値予報資料を修正するための補助 資料としたいと考えている。

今回は冬期(通常は12~2月だが、本調査においては 11~3月とする)について調査結果を述べる。

2.調査方法

Bond and Vecchi (2003)の行った解析に類似した方法で MJOの位相を抽出し、位相別の平年偏差合成図を作成して 偏差の有意性検定を行った。

解析に使用した循環場データはCDAS-2/NCEPの6時間解 析値(1979~2003年)、0LRデータはCDC/NOAAの日平均0LR (1979~2003年)、地上観測データは気象庁保有の地上 気象観測原簿データ(1979~2003年)である。

処理方法を具体的に書くと、MJOの周期帯を抽出するた

めに6時間解析値から作成した各種日別データセットに 対して20-70日周期のバンドパスフィルターを施した。 MJ0に伴う対流活発/不活発な位相を抽出するために、 20S-20Nで南北平均した200hPa速度ポテンシャル平年偏 差を通年で主成分分析にかけた。そしてEOF1スコア、 EOF2スコア(日別値)で張られる2次元空間の偏角を日 別毎に計算し、位相空間を12等分(30度毎、phase1~ phase12)したうえで、偏角から各サンプルをphase1~ phase12)したうえで、偏角から各サンプルをphase1~ phase12に振り分けた。更に(EOF1スコア)²+(EOF2スコ ア)²)^{0.5}>1.0を満足するサンプルを対象に、それぞれ phase1~phase12の合成図を作成した。このような閾値を 設けたのは、ある程度大きな振幅をもつMJ0を抽出するた めである。これにより約半分のサンプルがフィルターさ れた。

抽出したphase別合成値の平年偏差について、統計的有 意性の判定も行った。時間方向に連続したデータを取り 扱う場合、データの自由度をどのように扱うかが問題と なる。phase別のデータの自由度については、MJOの振幅 が明瞭な時にはphaseは順調に東進すると仮定し、同 phase内に時間的に連続してサンプルが存在する際はひ とつの波と見なして自由度を増やさないようカウントし た。平年の自由度の算出はLivezey(1999)を参考に、総サ ンプル数を自己相関係数から求めたeffective timeで割 るという方法を用いた。時間ラグ25日で自己相関係数は およそ0.1を下回るが、余裕を見てeffective time を60 日として計算を行った。以上の手順により計算された自 由度によって「phase別の合成値」と「平年値」との平均 値の差をt検定によって判定した。

3.調査結果

第1図に主成分分析の結果を示す。第1主成分は海洋大陸 で対流活動が活発な位相(EOF1)第2主成分については 西部から中部太平洋で対流活動が活発な位相(EOF2)を 表わしている。2つの主成分の寄与率を加えると82%にも なることから、上位2つの主成分でMJOの東進を十分に表 現できると考えられる。第2図に位相と振幅の2002年11 月~2003年3月の抽出例を示す。位相空間上ではMJOの振 幅が比較的大きな時には順調に東進していることが分か る。このように、解析データの速度ポテンシャルの精度 に問題がなければこの手法によりある程度振幅の大きな MJOの位相の追跡は可能であると考えられる。

第2図 MJ0 の位相と振幅の抽出例 期間は2002年11月~2003年3月。

冬期(11~3月)合成図 図の陰影域は危険率5%で統計的に有意な偏差を示す。

第3図つづき MJOの各phase1,3,5,7,9,11におけるOLR、速度ポテンシャル、ジオポテンシャル、風東西成分の 冬期(11~3月)合成図 図の陰影域は危険率5%で統計的に有意な偏差を示す。

(1)全球的な特徴

第3図に0LR偏差、200hPa速度ポテンシャル偏差、 1000hPa高度偏差、200hPa高度偏差、200hPa風東西成分偏 差を位相別に合成した結果を示す。200hPa速度ポテンシ ャル偏差を見ると、対流活動の活発域(赤道付近の0LRの 負偏差域)がアフリカ付近から太平洋西部にある時 (phase9~phase3)では、対流活発域の東進に対応して 波数1の波動が東進する様子が良く表われており、MJOを 良く捉えている。また、対流活発域が太平洋中部から東 部に東進した時(phase5)には、波動が対流活動の活発 域に先行するように大西洋へと東進しているのが分かる。 このような対流活発域と波動の位相のずれは、太平洋中 部から東部では海面水温が相対的に低いため、波動と対 流とのカップリングが起こりにくい所であり、Knutson and Weickmann(1987)らの解析結果とも矛盾しない。

OLRの偏差とあわせて1000hPa高度の偏差を見てみると、 対流活動に応答して卓越するMJOの波の構造が比較的良 く抽出できている。特に対流活動の活発域がインド洋~ 海洋大陸(phase11~phase1)に入った時に、対流活発域 の西側には赤道を挟んで対の負偏差が明瞭に見られ、こ れは赤道ロスビー波に対応する偏差と考えられる。 850hPa流線関数偏差からもこのような特徴が確認できる (図略)。また赤道付近では、対流活発域の東側には負偏 差の有意な領域が見られ、ケルビン波の構造が見られる。 対流活動の活発域が太平洋西部から中部に東進する (phase3~phase5)と、赤道ロスビー波に対応する偏差 は北半球では不明瞭となるが、ケルビン波に対応する偏 差は弱まりつつも、やはり対流活動の活発域に先行する ように大西洋へと東進している。

次に200hPa高度偏差を見てみると、赤道付近では 1000hPa高度偏差とおよそ逆の偏差が現れており、傾圧的 な構造となっている。ただし、北半球の15~30°N帯では、 1000hPa高度偏差とは異なる特徴が見られる。例えば、対 流活動の活発域がインド洋~海洋大陸(phase11~ phase1)に東進した時には、中東付近からユーラシア大 陸の南部にかけて正偏差が、太平洋では負偏差が最も明 瞭となっており、200hPa風東西風偏差を見ると、同時に 亜熱帯ジェットのユーラシア大陸上での加速、太平洋上 での分流が最も明瞭となっている。このような亜熱帯ジ ェットの変調は冬半球にのみ見られる特徴である。これ は冬期になると北半球の亜熱帯ジェットが30°N付近ま で南下することに伴い、対流活動変動の直接的な影響を 受けやすくなるためと考えられる。

中高緯度においても明瞭な偏差が現れている。特に北 太平洋のアリューシャン低気圧付近の振幅が大きくなっ ている。phase5とphase11における太平洋の循環偏差に注 目すると、対流活発、不活発な位相が大西洋に東進して いったにもかかわらず、MJOの東進から取り残されて明瞭 な偏差が見られる。Phase10前後の上層の循環場を見ると (第3図)西部太平洋の対流不活発な偏差に関連して、 Z200では25N付近を中心に負偏差域が広がっている。そし てその北側に正偏差域が見られる。これは500hPa高度で 日本の東海上で見られた明瞭な正偏差に対応している。 過去の研究によれば、このような中緯度の明瞭な偏差は、 熱帯の対流活動の直接的な影響だけでなく、亜熱帯ジェ ットが介在した中緯度の傾圧性擾乱との相互作用による 維持や、順圧的な不安定性などによって現れるようであ る。

(2)日本付近の特徴

日本付近の地上気温で統計的に有意な偏差が見られた phase2およびphase10の地上気温偏差、循環場偏差の合成 図を第4図と第5図に示す。

Phase2は西日本を中心に気温が負偏差となっており、 MJOの対流活発域がインドネシア付近に存在する時期に あたる。500hPa高度を見ると、日本付近は負偏差に覆わ れており、いわゆる日本谷の傾向を強める偏差パターン である。第3図200hPa東西風より、アジアジェットが華 中から日本の東海上にかけて加速されている。ジェット の加速域の少し北側の東日本付近では、500hPa高度の負 偏差がphase1に比べて急速に強まっており(phase1の図 は省略)、同時にベーリング海の正偏差も強まっている。 200hPa高度を見ると華南付近からアラスカの南海上にか けて波列状の偏差パターンが見られ(図略)、定常ロスビ ー波の伝播を示唆している。なお日本付近の負偏差のピ ークは、中~下層では下層へ行くに従い東側へ若干シフ トしており、擾乱による南北熱輸送も存在している。

次に全国的に高温となるphase10の循環場を見ると、 500hPa高度では日本の東海上の正偏差が明瞭な一方で大 陸方面は負偏差となっており、いわゆる西谷を強める偏 差パターンである。このような場合、華中から日本海に かけて傾圧性擾乱が発達しながら通過するために、擾乱 の前面で暖気移流が顕著となって地上気温が高くなりや すいことは経験的にも良く知られており、phase10の地上 気温偏差分布と合致している。また、phase2と同様に日 本付近の高度偏差の位相が中~下層では下層へ行くに従 い東側ヘシフトしており、擾乱による熱輸送の効果があ るものと考えられる。第3図のOLR分布図を見ると、 phase9~phase11にかけて日本付近は負偏差となってお り、この時期に擾乱や前線の活動が活発であることを示 している。またこの負偏差域は、亜熱帯ジェットの出口 (加速偏差と減速偏差の中間位置とイメージ出来る)の 位置と良く一致している。

(3)事例紹介

第6図には、2004年1月21~2004年2月10日の事例を示 す。この期間はMJOの振幅が比較的明瞭で、赤道域では海 洋大陸から太平洋西部で対流活動が活発となっており、 およそphase1~2に該当する。対流活動の活発域に対応し てユーラシア大陸南部の上層では高気圧性循環偏差が明 瞭となり、太平洋のジェットは分流している。また下層 では対流活動の活発域の西側で、低気圧性循環偏差が明 瞭となっている。2004年2月上旬はおよそphase2の期間に 該当するが、この時の日本付近の循環場は、500hPa高度 で見ると朝鮮半島付近を中心に負偏差が見られ、西日本 中心の低温となっている。

4.議論とまとめ

(1)ジェット出口の2次循環

phase11~phase1において、200hPa速度ポテンシャルに 注目してみると、対流活動の波動に先行して日本付近で 発散偏差が強まっているのが分かる。これは冬半球にの み見られる特徴であり、夏半球側にはほとんど見られな い。亜熱帯ジェットの減速が明瞭に見られる領域と非常 によく対応している。図は省略するが、この領域では 500hPaの上昇流の有意な偏差が見られており、亜熱帯ジ ェットの出口で2次循環の発散風成分が生じて渦管が引 き伸ばされ、この付近の低気圧性循環偏差を強化してい る可能性がある。

(2) フィリピン下層の循環偏差の役割

第2節で述べたように、第3図のOLR偏差では日本の南 岸ではMJOのphaseの違いにより明瞭な違いが見られる。 これは擾乱や前線活動がMJOの位相により変化すること を示している。このような違いをもたらす要因として、 アリューシャン低気圧の変動や華南上層の高度場の変動 に伴い、500hPa高度がphase3からphase5にかけてはいわ ゆる東谷パターン、phase9からphase5にかけてはひわ ゆる東谷パターン、phase9からphase5にかけては西谷パ ターンになっていることが挙げられる(図略)。さらにこ こではもう一つの要因として、赤道域の対流活動の応答 として形成されるフィリピン下層の循環偏差を挙げたい。 この循環偏差に伴い、日本の南海上へ流入する暖湿気が 変動するものと考えられるためである。同様の指摘は、 エルニーニョ現象時の冬季から初夏にかけて華南付近か ら日本の南海上の降水量が増大する現象に関して、 Wang(2000)によってされている。

(3)熱帯の対流活動とcold surge

前節ではインドネシア付近で対流活発になるphase2前 後に日本付近では気温が低くなることを示したが、シベ リア高気圧から吹き出すcold surgeが西部太平洋熱帯域 の対流活動の変動に影響を与えているとする考え方が一 方ではある(たとえばChang and Lau, 1980; Compo et al., 1999)。そこで、領域平均したOLRの時間ラグ関係につい 調べてみた(第7図)。データは20-70日の時間フィルタ ーをかけたものを使用し、キー領域をインドネシア付近 (5S-5N, 110-130E)とフィリピン東海上(10-20N, 125-145E)、に設定した。インドネシア付近で対流活動偏 差が現れる前12日からの推移に注目すると(第6図(a))、 対流活動偏差がインド洋から東進してくる様子が明瞭で あり、下層気温偏差が先行しているようには見えない。 つまり、20~70日の周期帯におけるインドネシア付近の 対流活動の変動に対しては赤道域の東進モードが支配的 であり、北からの寒気の影響は小さいと考えられる。一 方で、フィリピン付近の対流活動偏差から時間を遡ると (第6図(b))、前12日における対流活動偏差は不明瞭 で、前6日から急激に対流活動偏差が強まっている。東ア ジア域下層の気温偏差域は前6日にはフィリピン付近ま で南下しており、寒気の吹き出しに伴う対流活動の活発 化を示唆している。また、上層の循環場とのラグ回帰図 では(図略)、フィリピン付近の対流活動偏差に先行して、 EUパターンが明瞭に現れている。

しかしながら、ここで示した結果は対流活動の活発時/ 不活発時の両方を含んでいるため、厳密には対流活発時 のみの時間ラグ関係から再確認する必要がある。また、 そもそもMJOは中高緯度との相互作用を通して実現して いるとする見方もあるため(Meehl et al, 1996; Hsu, 1996) 両者を敢えて分離せずに一体の変動として捕らえ る方が良いのかもしれない。

(4)まとめ

ここでは調査結果を全て示すことはできなかったが、 MJOの日本の天候への影響を念頭においた循環場の特徴、 日本の地上気温偏差をまとめると第8図のようになる。 ただしこれはMJOの振幅がある程度大きな場合に限って 有効であること、そしてこれはあくまで熱帯側からの影 響であって、冬期の循環場の変動は中高緯度起源の変動 が卓越する点には留意する必要がある。

MJOの日本の天候への影響を理解する上で着目すべき 循環系として、 華南上層の循環偏差およびそこから伝 播する波のエネルギー、 アジアジェットの伸縮とそれ に伴う発散風成分の変動 フィリピン下層の循環偏差、

アリューシャン低気圧などが挙げられる。これらは傾 圧性擾乱の活動に対しても大きな影響を与えると考えら れる。今後は、国内の降水量、日照時間についても解析 対象に加える予定である。日本付近は0LR偏差でphase間 の違いが明瞭に見られることから、これら要素について も統計的に有意な偏差が現れることが期待される。さら に、日本付近の循環場、天候の特徴を物理的なプロセス で解釈できるよう、傾圧性擾乱の活動度との関係や、ジ ェットの変動を介した力学的メカニズムについても明ら かにしてきたい。

謝辞

本調査を進めるにあたり、気候情報課の前田修平予報 官には度々相談に乗って頂いた。また統計的検定を行う にあたって高橋俊二予報官から貴重なアドバイスを頂い た。深く感謝いたします。

参考文献

- Bond N. A. and G. A. Vecchi, 2003: The Influence of the Madden-Julian Oscillation on Precipitation in Oregon and Washington. Wea. and Forcast., 18, 600-613.
- Chang, C.-P. and K..-M. Lau, 1980: Northeasterly Cold Surges and Near-Equatorial Disturbances over the Winter MONEX Area During December 1974. Part : Planetary-Scale Aspects. Mon. Wea. Rev., 108, 298-312.
- Compo, G. P., G. N. Kiladis and P. J. Webster, 1999: The horizontal and vertical structure of east Asian winter monsoon pressure surges. Q. J. Meteorol. Soc., 125, 29-54.
- 林久美,河原幹雄 1990: 冬季の季節内変動と日本付近の 循環場(第2報:ラグ関係),全国長期予報技術検討 資料(気象庁予報部), 2-21.
- Higgins R. W., J.-K. E. Schemm, W. Shi and A. Leetmaa, 2000: Extreme Precipitation Events in the Western United States Related to Tropical Forcing. J. Climate, 13, 793-820.
- Hsu, H.-H., 1996: Global View of the Intraseasonal Oscillation during Northern Winter. J. Climate, 9, 2386-2406.
- Jones, C., 2000: Occurrence of Extreme Precipitation Events in Calfornia and Relationships with the Madden-Julian Oscillation. J. Climate, 13, 3576-3587.
- 河原幹雄,渡辺文雄,林久美,1989:冬季の季節内変動 と日本付近の循環場(第1報:同時関係),全国長期 予報技術検討資料(気象庁予報部),37-56.
- Knutson T. R. and K. M. Weickmann, 1987: 30-60 Day Atmospheric Oscillations: Composite Life Cycles of Convection and Circulation Anomalies. Mon. Wea. Rev. 115, 1407-1436.
- Livezey, R. E., 1999: Field Intercomparison, Analysis of Climate Variability(chapter 9). Springer, 161-178.
- Mheel, G. A., G. N. Kiladis, K. M. Weickmann, M. Wheeler, D. S. Gutzler and G. P. Compo, 1996: Modulation of equatorial subseasonal convective episodes by tropical-extratropical interaction in the Indian and Pacific Ocean regions. J. G. R., 101, D10, 15033-15049.
- Wang, B. Pacific-East Asian Teleconnection : How Does El-Nino Affect East Asian Climate?, J. Climate, 9, 1517-1536.

第4図 MJOの phase2 における日本の地上気温、500hPa 高度、850 気温、1000hPa 高度の各偏差 図の陰影域は統計的に有意な偏差を示す。

第5図 MJOの phase10 における日本の地上気温、500hPa 高度、850 流線関数、1000hPa の各偏差 図の陰影域は統計的に有意な偏差を示す。

(a) 2004 年 1 月 21 日 ~ 2 月 10 日平均の 200hPa 流線関数平年偏差(実線)、0LR 平年偏差(陰影域) (b) (a) と同期間の 850hPa 流線関数平年偏差(実線)、0LR 平年偏差(陰影域) 200hPa、850hPa 流線関数平年偏差には 20 ~ 70 日のパンドパスフィルターが施されている。 (c) 500hPa 高度(実線)、500hPa 高度平年偏差(陰影域) (d) 2003年12月~2004年2月の地域平均気温平年偏差の5日平均時系列図

MJOの合成図と同様にOLR、850気温平年偏差ともに20~70日周期のバンドバスフィルターをかけている。 キー領域はインドネシア付近(a)は5S-5N、110~130Eに、フィリビン付近(b)は10-20N、125-145Eに設定。

第8図 MJO の位相と循環場の関係の模式図(冬期)