谷本陽一(北海道大学大学院地球環境科学研究院) 甲斐浩平(北海道大学大学院地球環境科学研究科)

## 1. はじめに

2003/2004年冬季の黒潮続流海面水温フロン ト域において、北大・東大・ハワイ大を中心 とする研究グループは独立行政法人水産総合 研究センター中央水産研究所の協力を得て水 産庁照洋丸・開洋丸からGPSラジオゾンデ観 測を行った。前回の研究集会でこの観測デー タに対する解析結果を報告したように、黒潮 続流フロント付近では海面の安定度に伴い大 気境界層の気温・水蒸気量・風速の鉛直プロ ファイルは変質していることが観測から示さ れた(Tokinaga et al., 2005b). ただし、海面 の安定度は水温フロントに対する相対的な位 置だけで決まらず、大気の総観規模擾乱によ る空気塊の移流も安定度を変化させる要因で あった、大気下層に与える総観規模擾乱の影 響と海洋から影響を識別するためにはより観



図1:黒潮続流域におけるGPSラジオゾンデ観測の 実施地点(●). コンターは観測期間中で平均し たAMSR-Eの海面水温(℃). コンターの間隔は 0.5℃.

<sup>1</sup> <u>http://www.po.gso.uri.edu/kess/</u>

測数を増加させることが必須である。本報告 では大気の総観規模擾乱の様相が異なる 6-7月期の観測成果について、初期解析の 結果を紹介する。

黒潮続流域における大気観測計画の一環とし て、夏季の大気海洋相互作用系の実態を把握 するために、2005年6月17日から7月17日まで 米国Scripps海洋研究所所属海洋調查船Roger Revelleから図1に示す海域においてGPSラジ オゾンデ観測を行った。図1に示される観測 線は海面高度計を搭載した人工衛星軌道上を 経緯約0.75度間隔に配置された海洋表層流速 計群を結んでいる。このような大量の流速計 群を含む海洋物理観測は米国の海洋物理観測 プロジェクトKESS<sup>1</sup> (Kuroshio Extension System Study) により2004年から進められて いる。GPSラジオゾンデ受信機は京都大学生 存圏研究所所有の受信機を共同利用機器とし て使用した、センサーはヴァイサラ社製の RS92-SGPラジオゾンデを用い.対象海域に おける気温、湿度、風向風速の鉛直プロファ イルを116回取得した.

2003/2004年の場合に比べて、風データの取 得率が100%と格段に向上した. これは、 メーカー側の受信機とセンサーの改良があっ たことと船体に設置するUHF受信アンテナの 設置位置を事前に調査したことが好結果につ ながったと考えている.

本報告で使用する図のオリジナルはカラー なので、webサイト<sup>2</sup>を通してPDFファイルを

<sup>2</sup> <u>http://wwwoa.ees.hokudai.ac.jp/people/tanimoto/pdfs/05kyoto\_report01.pdf</u>

取得してください.

2.夏季黒潮続流域の気候学的状態
 A.大気下層と海面水温

本州東方上には北緯36-37度付近を東へ流れ る黒潮続流に伴う水温前線と北緯40-41度付近 の亜寒帯前線と呼ばれる水温前線が存在して いて,この南北方向に二重になった前線帯は 0.5度格子間隔の船舶観測資料データ(highresolution, regionally analyzed COADS(HiRAC); Tokinaga et al. 2005a,図2右上)や最新の高 解像度人工衛星データ(図省略)の海面水温 から明瞭に示される。これらの水温前線は地 球シミュレータで行われた海洋大循環モデル の長期hindcast実験でもよく再現されていて、 実験結果に対する解析はこの2つの海面水温 前線が亜表層約400m程度のcoherentな構造を 持ち、年々~10年の規模で変動していること を示した.冬季の黒潮続流・亜寒帯前線にお いては北東風が卓越し大気下層の気温は日本 付近で経度方向の極小となる(図2左上). このような大気条件のもとで海洋には数千km 規模の冷却が生じるが、水温前線の空間規模 は数百kmであるので、水温前線の形成および その変動には大気からの強制よりもむしろ海





図2:黒潮続流域における(左)ECMWF40年再解析925-hPa面の気温(単位はK, コンター, 2K間隔), 比湿(kg/kg, ハッチ), surface wind (m/s, ベクトル)及び(右)COADSの海面水温(2℃間隔, コンター)とCMAP降水量(mm/ day, ハッチ). 上段(下段)は1月(6月)の気候値. ハッチの凡例と矢印の大きさは各パネルの下に示されている. 洋力学の諸過程が大きく寄与していると考え られる.そのため、海面水温前線は海洋混合 層が深く亜表層の状態が海面水温に出現する 冬季だけでなく、比較的混合層深が浅い6月 期でもよく見られている(図2右下).

これらの水温前線に伴い,夏季においても 海洋の大気下層(925hPa面)における気温の 南北勾配は比湿の南北勾配とともに海洋上の 東経140度より東で明瞭である(図2左 下).一方,日本上空より西では南北勾配よ りむしろ東西勾配の成分が卓越しており,こ れは夏季モンスーンに関連する温度や湿度の 海陸コントラストを示している.

大気下層の南北勾配が大きい緯度帯の海洋 上では大気総観規模擾乱に伴う降水量は冬季 と同様に夏季においても緯度方向の極大と なっていて(図2右下),大気下層の収束を 伴っている(図2左下).夏季における海洋 上の降水帯はこの緯度帯に停滞する梅雨前線 の活動と強く関わるが,前線活動に対する海 洋からの影響はまだよく理解されていない.

B. 下層雲と霧

夏季における北太平洋亜寒帯海域は下層雲 が卓越する海域として知られており(Klein and Hartmann, 1993; Norris et al., 1998),夏季におけ る北太平洋海面水温変動に強く影響している (Norris, 2000).

図3にHiRACに基づいた夏季北太平洋におけ る下層雲量,全雲量,海面水温,海上気温, 海面の相対湿度,ECMWF40年再解析値の 10m高度風ベクトルの気候値を示す.6 月,7月ともに,北緯40度以北の亜寒帯では 日本東方からアメリカ大陸西岸まで全域下層 雲が70-80%を占めている.下層雲域の南端は 西部ではほぼ黒潮続流域に対応し,西経140 度より東では、北緯30度より南の亜熱帯域ま で拡がっている(図3:上段)、以上の下層雲 分布の特徴は全雲量の分布とほぼ同じとなっ ている(図3:2段目)、このように下層雲が 広がる海域はかなり広範囲になっているが、 その特徴は海域によって以下のように異なっ ている。

6-7月期の亜寒帯域における海上風は南 よりであり(図3:下段).暖かく湿った空気 塊の流入があるので海面付近の水温と気温の 差は負となり(図3:3段目),海面付近の静 的安定度は安定となっている。海面の相対湿 度は86%より大きく、特にベーリング海では 92%を超えていて(図3:下段),海上で霧が 発生している状況と思われる。一方、北太平 洋南東部では北よりの風であるため海面付近 の静的安定度は不安定であり混合層の発達が 期待される、海面の相対湿度は下層雲域で あっても80%以下となっていて、霧は発生せ ず、混合層上部を覆う下層雲となっていると 考えられる、このように、通報では同じ下層 雲となっていても、現場での雲の様子はかな り異なっていると思われる。

6月の黒潮・黒潮続流上に沿う海面水温と 海上気温の差は正であり、夏季における西部 北太平洋では例外的に海面付近の静的安定度 が不安定となっている(図3:3段目左).こ の海域の全雲量は70%を超えているものの

(図3:2段目左),下層雲量は70%以下と なっている(図3:上段左)ので,この海域で は中高層雲が卓越していると考えられる。海 面の相対湿度もこの海域ではまわりに比べ 数%ほど低くなっている(図3:下段左)。7 月になり気温も上昇し,黒潮・黒潮続流域に おける海面付近の不安定性が減少すると(図



図3:COADS に基づいた北太平洋における夏季の(上段)下層雲量(単位%, ハッチ)と海面水温(2℃間隔, コ ンター), (2段目)全雲量(%, ハッチ)と海上気温(2℃間隔, コンター), (3段目)海面水温マイナス海上気 温(℃, ハッチ), (下段)相対湿度(%, ハッチ), ECMWF40年再解析値の10m高度の風ベクトルの気候 値. 左(右)のパネルは6月(7月)の気候値. ハッチの凡例は各パネルの下に示されている. ベクトルの凡例 は5m/s.

3:3段目右), 全雲量も減少する(図3:2 段目右)ことが示されている. このような中 高層雲の変化は梅雨前線とも関連していると 考えられるが, 前線帯に現れる雲が海洋から どのような影響を受けているかは興味深い. このように海面水温の変化に伴う海面付近 の大きい静的安定度の変化は下層雲や霧の形 成に寄与していると考えられるが,海洋から 下層雲への影響を含んだ大気と海洋のフィー ドバック系が季節ごとにどのようになってい るかはまだ良く理解されていないので,相互 作用の実態を観測から提示する必要がある.

## 3. 夏季黒潮続流域上の大気境界層構造

図1に示されるように、今回の観測では黒 潮続流沿いの水温フロントを約10回横断す る観測を行った.図4に観測時の海上風の南 北成分が北よりのとき(図4左)のときと南 よりのとき(図4右)で区別してコンポジッ トしたGPSラジオゾンデ観測による仮温位と 相対湿度(上のパネル),相当温位と気温 (中のパネル)の緯度—高度断面図と海上気 象要素の緯度分布(下のパネル)を示す.コ ンポジットの基準にも用いた海上気象要素は ラジオゾンデを放球した前後30分の平均値と した. 緯度方向には0.4度のbinにわけて、コ ンポジットを行った.

図2に示されるように夏季の黒潮続流海域 では南よりの風が卓越しているものの,総観 規模擾乱によって北よりの風も吹く. 北緯35-37度付近での北よりの風の頻度は各緯度のbin で2回から6回観測されている.

南風コンポジット(図4右側)では,海面 付近の静的安定度が北緯30-37度まで安定と なっているのに対し,北風コンポジットは (図4左側)では観測が行われた範囲で全域 不安定となっている.

仮温位の鉛直勾配は海面付近が安定である 南よりの風のときに大きく,不安定である北



図4: GPSラジオゾンデ観測による(上)仮温位(1K間隔, コンター)と相対湿度(%, ハッチ), (中)気温(1℃間隔, コンター)と相当温位(K, ハッチ)の緯度-高度断面図と(下)ゾンデ観測時に船上で観測された海上気温(℃, 赤線), 海面水温(℃, 青線)と海面水温と海上気温の差(静的安定度, ℃, 棒). 左側(右側)は放球前後の南北風が北風 (南風の時)のコンポジット.

よりの風の方が小さい.このような静的安定 度の違いは風向きよって大きく変化する海上 気温と大気の変化にあまり応答しない海面水 温によってもたらされる.

北風の時に形成される混合層は高度約1000-1200m程度の厚みをもつ。同時に気温の逆転 層が混合層の上端に示される。相対湿度も混 合層の上端で90%を超え、この高度で下層雲 が形成されていることを示唆する。相当温位 が緯度方向に大きく変化する北緯37度付近で は相対湿度の極大が高度2000mを超えるとこ ろまで出現している。

一方,南よりの風のとき混合層はあまり発 達せず,気温の逆転層も見られない.相対湿 度は大気の下端で最も大きく,全体的に海霧 が発生していることが示唆される.

このように夏季の黒潮続流上では大気と海 洋の条件が境界層の構造や下層雲・海霧の形 成に大きく関与していることが観測事実とし て示された.

## 4. おわりに

夏季の黒潮続流上の大気観測から、冬季と は異なった海洋上の大気境界層構造の特徴を 示すことができた.この特徴はすべて海洋か らの影響によるものではなく、大気の総観規 模擾乱からの影響も受け、この海域の大気海 洋相互作用の結果として観測されたものであ る.観測からのみで、大気と海洋の双方向の 関係を捉えることは困難であるが、数値実験 を実行していくとともに、さまざまな局面で の観測サンプル数を増やすことにより、中緯 度の大気海洋相互作用の理解を改善するよう 努力したい.

**謝辞**:本報告に関わる研究には以下の研究 チームのメンバーが関わっている。時長宏樹 (JAMSTEC地球環境観測研究センター), 謝尚平(ハワイ大学国際太平洋研究セン ター),野中正見(JAMSTEC地球環境フロ ンティア研究センター),中村尚,後藤敦史 (東京大学大学院理学系研究科).高垣吾 郎,Roxy Mathew(北海道大学大学院地球環 境科学研究科).特に,海洋上の大気観測を 行なうにあたりご協力いただいたKESSの共 同主席研究者の一人である米国University of Rhode IslandのRandy Watts,Scripps海洋研究所 Roger Revelleの船長をはじめ乗組員の皆様に 厚く感謝を申し上げる.

## 参考文献

- Klein, S.A. and D.L. Hartmann, 1993: The seasonal cycle of low stratiform clouds, *J. Climate*, **6**, 1587-1606.
- Nonaka, M., H. Nakamura, Y. Tanimoto, T. Kagimoto, H. Sasaki, 2005: Decadal variability in the Kuroshio-Oyashio Extension simulated in an eddy-resolving OGCM, *J. Climate*, in press.
- Norris, J. R., 2000: Interannual and interdecadal variability in the storm track, cloudiness, and sea surface temperature over the summertime North Pacific. *J. Climate*, **13**, 422-430.
- Norris, J. R., Y. Zhang, and J. M. Wallace, 1998: Role of low clouds in summertime atmosphere–ocean interactions over the North Pacific. *J. Climate*, **11**, 2482–2490.
- Tokinaga, H., Y. Tanimoto, S.-P. Xie, 2005a: SST-induced surface wind variations over the Brazil/Malvinas Confluence, *J. Climate*, **18**, 3470–3482.
- Tokinaga, H., Y. Tanimoto, M. Nonaka, B. Taguchi, T. Fukamachi, S.-P. Xie, H. Nakamura, T.
  Watanabe, and I. Yasuda, 2005b: Atmospheric sounding over the winter Kuroshio Extension: Effect of surface stability on atmospheric boundary layer structure, *Geophys. Res. Lett.*, submitted.