冬季大気循環異常にかかわる夏季北極海の海氷面積異常

本田明治(海洋研究開発機構地球環境フロンティア研究センター) 猪上 淳(海洋研究開発機構地球環境観測研究センター) 山根省三(千葉科学大/海洋研究開発機構地球環境フロンティア研究センター)

1.はじめに

2005/06 年冬の日本付近は 12 月を中心に 非常に厳しい寒さ(図1a)に加え、広い範 囲で大雪に見舞われた。2005年12月の月 平均の海面気圧 (SLP) 分布図をみるとシ ベリア高気圧(SH)とアリューシャン低気 圧(AL)の異常な発達が確認できる(図 1b)。 両者の発達とその持続に直接的にかかわる 要因について、北極振動、熱帯域のベンガ ル湾からフィリピン付近の強い積雲対流活 動、極東のブロッキング、アリューシャン・ アイスランド低気圧シーソーの形成、北大 西洋域を波源とするユーラシア大陸上の波 束伝播、日本付近の海面水温(SST)異常、 などさまざまな角度から調べられている。 ただこれらは主に 2005 年 12 月を中心とし た大気循環場の特徴そのものを解析したも のがほとんどで、このような循環異常をも たらした要因を解明するものとは言えない。 本研究では冬季の日本付近に寒さをもたら す何らかの先行現象を探していきたい。

2005/06 年冬は他にもさまざまな顕著現 象が観測された冬であったが、海氷の広が りもその例外ではなかった。日本列島が低 温と大雪に見舞われる中、日本の北に位置 するオホーツク海一帯は特に主な海氷生成 域である北西部を中心に秋から高温傾向が 持続した(図 1a)。このような初冬の北西 部の高温は海氷の初期の拡大を妨げ(山崎 2000)この冬の海氷面積の極端に少ない状 態の継続にも寄与したと予想される。結局

図1.(a) 2005年12月の地上気温偏差()の 気候値からの偏差。(b)海面気圧 (SLP: hPa) 観測値(等値線)と気候値からの偏差(色)。 (c) 250 hPa高度 (Z250: m)の観測値(等値線) と気候値からの偏差(色)。矢印はTakaya and Nakamura (2001) による定常ロスビー波の活 動度フラックス。

100

寒候季の積算海氷面積は過去 36 冬の観測 で最小を記録した(図 2a)。オホーツク海 の海氷面積と日本の冬季気温の関係は統計 的に有意ではないが、海氷がかなり少ない シーズンの初冬の 11 月~12 月を中心に日 本付近はしばしば低温に見舞われ、最近で は 1995/96 年、1988/89 年、1983/84 年冬な どがそうである。特に 1995/96 年冬は 12 月 を中心に低温で、このとき SH の勢力はや や強い程度であったが、AL の勢力は 2005 年 12 月並であった。また 1995/96 年冬の積 算海氷面積は 2005/06 年冬に破られるまで 最小の記録を持っていた。

この両冬にかかわる共通の特徴は季節を 遡ってもいくつか確認できる。両冬とも低 温フェーズへの移行は 11 月にカムチャッ カ半島付近で発生したブロッキングがきっ かけとなっており、それ以前秋から初冬に かけてのユーラシア大陸は全般に高温傾向 であった。例年9月に最小となる北極海の 海氷は 1995 年にそれまでの最小面積を記 **録、また 2005 年も最小の記録を更新した** (図 2b) 暖候季の北極海の海氷は近年顕 著な減少傾向にあるが、両年はいずれもシ ベリア沿岸の海氷が極端に少なかったのが 特徴的である。SLP 分布異常に伴い北極海 から大西洋への海氷流出が大きかった事例 とみられる(猪上・菊地 2006)。本研究で は、1995/96年と2005/06年の夏から冬の経 過の類似性などを考慮して、日本付近の冬 に寒さをもたらす要因のひとつとして北極 海の海氷面積の異常に注目する。

2.データ解析

海氷データは英国ハドレーセンターの HadISST を用いた。日本の気温は気象庁編 集の全国月平均気温、大気データは NCEP-NCAR 再解析を用いた。解析期間は 1978/79年~2005/06年の28冬とした。まず 冬季日本の気温(12月~2月平均)に基づ いて典型的な寒冬時の大気場の構造を線形 回帰によって調べると、地表ではSHとAL の発達がみられ、対流圏上空では北太平洋 北米(PNA)パターン及ぶユーラシア(EU)

図2.(a) 2006年2月のオホーツク海の海氷分 布。紫と緑の等値線はそれぞれ90%と15%の 海氷密接度。色は平年値からの偏差。(b)(a) に同じ、ただし2005年9月の北極海の海氷分 布。

パターン (Wallace and Gutzler 1981) が明瞭 で、極東域では典型的な南北ダイポール構 造(日本付近の北緯 40 度帯で低気圧性偏差、 北緯 60-70 度帯で高気圧性偏差) が特徴的 である(図略)。2005 年 12 月(図 1c)の場 はこれらの特徴をよく反映しており、典型 的な寒冬パターンが特に強まったケースと 解釈できる。冬季日本の気温(12 月~2 月 平均)と北極海の海氷との関係を調べると、 大西洋に面しているバレンツ海~カラ海 (以下 BK 海)の夏季の低密接度と、続く 冬の日本の低温は有意に関係していること が分かった。図 3a に示したのは 10 月の海 氷密接度の冬季日本気温への線形回帰だが、

図 3.冬季(12-2月)日本の気温との線形 回帰。解析期間は 1978/79 年~2005/06 年 の 28 冬。冬季日本の気温が 1.56 (2標準 偏差)低下した時に予想される偏差 (a) 10 月の北極海の海氷密接度(%)。色は偏 差が 90%、95%、99%で有意な領域。紫と 緑の等値線はそれぞれ平年の 90%と 15% の海氷密接度。外周の赤線は 70°N。(b)(a) に同じ。ただし 10-11 月の Z250 (m)。矢 印は Takaya and Nakamura (2001) による定 常ロスビー波の活動度フラックス。外周は 20°N、赤線は 70°N。

7 月~11 月の海氷密接度も同じ傾向である。 図 3b に示した対応する秋季大気場の特徴 は、低密接度に伴う地上気温の高温偏差と、 海氷偏差の東側を中心にみられる高気圧性 偏差で地表から対流圏上層まで等価順圧的 な構造である。この空間構造は海氷偏差に 伴う西風背景場の大気場の定常応答と整合

図4. バレンツ~カラ海 (BK海)の10月の 海氷面積との線形回帰。BK海の海氷面積が 1標準偏差減少したときに予想される偏差。 12月の (a) 地上気温 ()と (b) SLP (hPa) で色は偏差が90%、95%、99%で有意な領域。

的である (Honda et al. 1999)。この高気圧性 偏差から弱いながらも停滞性ロスビー波の 活動度 (Takaya and Nakamura 2001) を下流 方向に伝播し、極東付近に中心をもつ低気 圧性偏差を伴っている(図 3b)。このよう な南北構造は北緯 50-60 度付近でのジェッ トやストームトラックの弱まりに対応し、 ブロッキングが起きやすい環境場を作って いると言い換えることもできる。更に季節 進行に伴い、両偏差は東方に拡大し日本付 近が低温になる極東域の南北ダイポール構 造をよく反映するようになる(図略)。

続いて 10 月の BK 海北部 (75-85°N,

30-90°E)の海氷面積時系列と大気場の関 係をみる。10月及び11月の大気場は図3b のような大気場を再現していない。この時 期の海氷偏差を形成する大気場のシグナル なども混入するからであろう。しかし 12 月の大気場の10月のBK海氷時系列への線 形回帰図は、BK 海の海氷減少に伴い日本 を含む極東~中央アジアの有意な低温を再 現している(図 4a)。 対応する SLP 場は SH と AL のいずれも有意に発達することを示 している (図 4b)。これらの空間構造の特 徴は 2005 年 12 月の状況 (図 1) をかなり よく反映している。ただし対流圏上層では 日本付近上空の有意な低気圧性偏差は確認 できるが、高緯度側の高気圧性偏差は有意 ではなく、ユーラシア上空の波動伝播の状 況は EU パターンとは異なっており、太平 洋上の PNA も見られない(図略)。しかし ながらこの結果は、秋口の北極海特にシベ リアセクターの海氷面積異常冬季日本の気 温を決めるさまざまな要因のひとつである ことを示唆するものである。

3.数值実験

続いて BK 海の海氷が大気場に及ぼす影 響について大気大循環モデルを用いた感度 実験によって確かめた。用いたモデルは AGCM for Earth Simulater (AFES, Ohfuchi et al. 2004)のVer. 2.5 である。水平方向の分 解能は三角波数切断 42 で約 2.8 度、鉛直方 向は最上層を 8 hPa として 20 層取った (T42L20)。10月~12月のBK海のみに海 氷の多少を設定(30-90°E で、多氷は気候値 の海氷密接度が10%以上の海域を90%に、 少氷は気候値の密接度が 90%未満の海域 を海氷無しとした。領域は図 3a 参照)し、 他の海域の海氷分布とSST は全て気候値に 設定した。ちなみに 12 月の対象海域はほぼ 密接度 90%以上の海氷に覆われているた め、実質的に 10 月と 11 月の海氷域の違い を反映するものとみなしてよい。同じ大気 の初期条件より「多氷」、「少氷」それぞれ の境界条件で翌3月まで走らせる感度実験 を、コントロールランの6年目~10年目の

図 5. 数値実験による 10-12 月の BK 海の海 氷の多少に伴う、12 月の大気場応答の差(少 氷ラン - 多氷ラン)。12 月の(a) 地上気温 ()と(b) SLP(hPa) で色は差が 90%、 95%、99%で有意な領域。数値実験の詳細は 本文参照のこと。

10月1日を初期値として5メンバーずつ実施した。解析は「少氷ラン」と「多氷ラン」の5メンバーのアンサンブル平均の差の場に主に着目した。

10月~11月の「少氷-多氷」の場は観測 データの解析結果と同様図 3b のような大 気場を有意には再現していない。しかしな がら12月の「少氷-多氷」の場を見ると(図 5a) 有意な領域は狭まったものの、日本を 含む極東から中央アジアにかけて低温偏差 が広がっており、観測データの解析結果(図 4a)や2005年12月の状況(図1)とも整 合的である。ただし日本付近の温度偏差は 1~2度程度で、それほど大きいものではな い。対応する SLP 場では SH の発達は確認 できるが太平洋上の AL に有意な偏差は見 られない(図 5b)。対流圏上層では日本付 近の低気圧性偏差を除き典型的な寒冬時の 構造とは異なっている(図略)。

ここで注意すべきことは、この実験は 2005年12月の状況は念頭に置いているが、 そのものを再現することが第一の目的では ないことである。この実験結果から示唆さ れることは、秋の BK 海の海氷の多少は日 本の冬の気温場に何らかの有意な影響を及 ぼし得るということである。実際今回の実 験における対流圏上層の振る舞いは、典型 的な寒冬時の構造や、2005 年 12 月のよう な北半球規模の循環異常とは異なっている 部分も多く、他の要因に拠るものと考える のが妥当であろう。ただし感度実験の結果 が 2005 年 12 月の状況をユーラシアセクタ ーで部分的ながら再現していることは、秋 口の BK 海の海氷変動が 2005 年 12 月の大 気場の構造を形成した要因の候補のひとつ であることを示唆するものである。

BK海氷偏差に対する10月~11月の大気 場の振る舞いのメカニズムも解明していく 必要がある。空間スケール的にBK海が大 規模な循環場変動を直接励起するとは考え にくく、むしろローカルな影響に留まると 考えるのが自然であろう。しかしそれは循 環場異常をもたらす何らかのきっかけを与 えるかもしれない。2005/06年や1995/96年 の寒冬フェーズへの移行の前にいずれも極 東域でブロッキングが発生していたが、BK 海がそのきっかけを作っている可能性は否 定できない。アンサンブル平均ではなく 個々のメンバーを解析していく必要もある だろう。

4.まとめと今後

2005 年 12 月のような異常低温をもたら した要因のひとつとして夏~秋の北極海の 海氷面積異常に着目した。観測データの解 析から、秋の BK 海の海氷面積が少ない(多い)時、続く冬の日本の気温が有意に低く (高く)なっていることが示された。大気 大循環モデルを用いた感度実験でもこの関 係が確認され、秋口の BK 海の海氷面積異 常が冬季日本の気温を決めるさまざまな要 因のひとつであることを示唆するものであ る。しかし秋口の大気場の応答などメカニ ズムには未解明な部分があり計算結果を更 に詳しく見ていく必要がある。

今回は日本の冬季気温との関係から BK 海のみ着目したが、2005/06 年や 1995/96 年 の特徴である北極海シベリア沿岸全体の少 氷、続く冬のオホーツク海の極端な少氷と 北半球循環場異常に関係も今後調べていく 予定である。また夏季北極海の海氷面積は その前の冬の北大西洋振動 (NAO)の影響 を強く受けているとも考えられている。 1995年及び2005年冬のNAOはいずれも高 指数で、続く夏のシベリアセクターの低密 接度の要因のひとつとして注目していきた い。ただ最近10年ほどの北極海の海氷面積 が著しい減少傾向にあることは注意すべき 点である。また近年の温暖化傾向や十年規 模変調も考慮して解析を進めていく必要が ある。

参考文献

- Honda, M., K. Yamazaki, H. Nakamura, and K. Takeuchi, 1999: Dynamic and thermo-dynamic characteristics of atmospheric response to anomalous sea-ice extent in the Sea of Okhotsk. J. Climate, 12, 3347-3358.
- 猪上淳, 菊地隆, 2006: 2005年の北極海におけ る海氷減少 - ブイ観測から - 日本気象 学会2006年度秋季大会予稿集, A151.
- Ohfuchi, W., H. Nakamura, M. K. Yoshioka, T. Enomoto, K. Takaya, X. Peng, S. Yamane, T. Nishimura, Y. Kurihara, and K. Ninomiya, 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator. –Preliminary outcomes of AFES (AGCM for the Earth Simulator) –. *J. Earth Sim.*, 1, 8-34.

Takaya, K., and H. Nakamura, 2001: A

formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. *J. Atmos. Sci.*, **58**, 608-627.

Wallace, J. M., and D. S. Gutzler, 1981:

Teleconnections in the geopotential height field during the Northern Hemisphere winter. *Mon. Wea. Rev.*, **109**, 784–812.

山崎孝治,2000:オホーツク海の海氷面積 と冬の大気循環との相互作用.雪氷,62, 345-354.