遠藤洋和(気象研·気候研究部)

1. はじめに

初夏を中心に日本の北東の冷たい海洋上か ら風が吹くことが度々ある。このとき、北日 本太平洋側を中心に不順な天候(低温と日照 時間の減少)に見舞われる。この風は一般に ヤマセと呼ばれる。過去にヤマセの頻発がこ の地域に大きな農業被害をもたらしてきた。 このため、地球温暖化に伴いヤマセの頻度や 発現時期が変化するか否かについてはこの地 域の人々の大きな関心事である。ヤマセは身 近な気象現象であると同時に、オホーツク海 高気圧、太平洋高気圧、梅雨前線、ブロッキ ング流など、東アジアの夏を特徴づける大規 模循環場と関係深い。このため、ヤマセに関 して気候モデルの再現性や将来変化について 検討することは気候学的側面からも有意義で ある。

近年、気候モデルの性能向上により地域的 な気候変化予測が可能になってきた。温暖化 に伴う日本付近の気候変化予測研究では、 Kimoto (2005) は third phase of Coupled Model Intercomparison Project (CMIP3) の 17 の気候モデルの CO2の1%漸増実験結果を 解析し、日本の南方の亜熱帯高気圧と北方の 高気圧が強まり、梅雨前線の活動が活発化す ることを示した。Kitoh and Uchiyama (2006) はCMIP3の15の気候モデルの20C3Mシナリオ と SRES-A1B シナリオの解析から、日本付近は 高いモデル間一致率で梅雨明けが遅れること を示した。Kusunoki et al. (2006) と Kusunoki and Mizuta (2008) は 20km 全球大 気モデルの解析から、梅雨前線の活発化およ び梅雨明けが遅れること示した。Arai and Kimoto (2008) はMIROC-hiの大気モデル実験 から、東アジア循環場の将来変化は現在気候 における冷夏レジームの頻度の増加として現 れることを示した。

本研究では、World Climate Research

Programme (WCRP)による CMIP3 に参加した 18 の大気海洋結合モデルの実験データを解析し て、ヤマセ頻度の再現性評価および将来変化 予測を行った。また、その予測結果を補うた め日本を含む北西太平洋の平均海面気圧 (MSLP)の将来変化予測を行った。将来予測 は、ヤマセ頻度および MSLP の数値的な再現性 能に基づき、再現性能の高いモデル群と低い モデル群に分類して行われた。そして、得ら れた予測結果について考察した。

2. データ

CMIP3 気候モデル群のうち、20世紀再現実 験(20C3M)の1981~2000年、SRES-A1Bシナ リオの2081~2100年のそれぞれ20年間につ いて日データが存在する18の気候モデルの 実験データを解析した。一部のモデルでは複 数の実験が存在するが、本研究では1モデル につき1つの実験結果を解析した。再解析デ ータはJRA-25 (Onogi et al., 2007)および NCEP/NCAR (Kalnay et al., 1996)を使用し た。モデルごとに水平解像度が異なるため、 2.5°×2.5°の緯度経度座標に内挿した後 に解析した。解析期間は、ヤマセの季節と言 われる5~8月とした。

3. 再現性の評価

北日本東海上(142.5°-155°E,40°-45° N平均)の地上風が北東風である場合をヤマ セ出現と定義し、その頻度を累年の旬平均値 から数えた。持続的に吹くヤマセに着目する 目的で旬平均値を用いた。JRAにおける20年 平均のヤマセ頻度を図1に示す。ヤマセ頻度 は5月下旬以降上昇し、6月上旬から7月上 旬にかけて頻度が多くなり、ピーク時の出現 頻度は30%に達し、7月中旬以降減少する。 ヤマセ頻度の多い時期は梅雨の時期にほぼ一 致する。

ヤマセ頻度をモデル別ならびに月別に集計 した結果を表1に示す。同時に JRA のヤマセ 頻度も示す。モデルのヤマセ頻度はモデル間 のばらつきが非常に大きく、多くのモデルで JRA に比べて少ない傾向にあった。5~8月 合計で見ると、IRA の43回/20年を超える モデルは、mri_cgcm2_3_2aとipsl_cm4の2 つしかない。月別の変化を見ると、ヤマセ頻 度は JRA では6月に最も多くて16回/20 年である。6月にピークをもち10回/20年 以上の頻度があるモデルは、csiro_mk3_0、 csiro_mk3_5、gfdl_cm2_0、giss_model_e_r、 inmcm3_0の5つしかない。一方、8月のヤマ セ頻度は、JRAでは8回/20年であるが、そ の頻度を超えるモデルは、cnrm_cm3、 csiro_mk3_0,csiro_mk3_5,iap_fgoals1_0_g, mri_cgcm2_3_2a, ipsl_cm4, ingv_echam4, miub echo gの8つある。

ヤマセ頻度の再現スキル(Skill_Yamase)を、 月別のヤマセ頻度のバイアスの根2乗平均和 (5~8月)と定義した。値が小さいほどス キルが高いことを意味する。Skill_Yamaseの 値を表1に示す。最もスキルの高い csiro_mk3_5の2.35から最もスキルの低い cccma_cgcm3_1_t63の10.79までの範囲に分 布している。

Skill_Yamase と気候平均場の再現性の関 係を探るため、ヤマセ頻度と関係が深いと考 えられる MSLP の再現スキルを調べた。 Taylor(2001)の式(4)の定義に従い、日本 を含む北西太平洋(25°-60°N、120°-180° E)のMSLPのスキルスコアを、5月、6月、 7月、8月のそれぞれの月で計算し、それを 同期間で平均した。この値をMSLPの再現スキ ル(Skill_MSLP)と定義した。Skill_MSLPの 値を表1に示す。また、Skill_MSLP と Skill_Yamaseの関係を図2に示す。北西太平 洋のMSLP 再現性の良いモデルほどヤマセ頻 度の再現性が良いという関係が見られる(R =-0.68)。

表1 モデルのヤマセ頻度、ヤマセ頻度のスキルスコア、平均海面気圧(MSLP)のスキルスコア。S Sは正規化した2つのスキルスコアの平均値。MME18は18モデル単純平均、MME9hiはSSのスコアが 高い9モデル平均、MME9lowはそれ以外の9モデル平均。s.d.はモデル間の標準偏差。JRAのヤマセ頻 度も示す。モデル名の左の(*)はMME9hiに選択されたモデルを意味する。

	Yamase frequency (/20yr)							MSLP x-y map		Metric
							Adjuste		Adjusted	
Model	May	Jun	Jul	Aug	May-Aug	Skill	d	Skill	Skill	SS
cccma_cgcm3_1	2	3	5	4	14	8.05	0.325	0.803	0.224	0.275
cccma_cgcm3_1_t63	2	0	1	0	3	10.79	0.000	0.758	0.000	0.000
* cnrm_cm3	8	9	8	10	35	4.18	0.782	0.914	0.771	0.777
* csiro_mk3_0	5	13	8	12	38	3.35	0.881	0.960	1.000	0.940
* csiro_mk3_5	3	15	11	10	39	2.35	1.000	0.929	0.846	0.923
* gfdl_cm2_0	6	10	7	4	27	4.42	0.755	0.949	0.942	0.848
* gfdl_cm2_1	3	6	7	7	23	5.96	0.572	0.957	0.985	0.779
* giss_aom	1	7	8	5	21	5.96	0.572	0.930	0.850	0.711
* giss_model_e_r	11	20	4	4	39	5.29	0.651	0.892	0.662	0.657
iap_fgoals1_0_g	3	4	18	11	36	7.16	0.430	0.850	0.455	0.443
inmcm3_0	4	11	3	5	23	5.57	0.619	0.891	0.656	0.637
miroc3_2_hires	5	8	5	4	22	5.77	0.595	0.811	0.263	0.429
miroc3_2_medres	6	8	2	0	16	7.57	0.382	0.771	0.068	0.225
* mpi_echam5	6	7	4	2	19	6.75	0.479	0.936	0.882	0.680
mri_cgcm2_3_2a	6	14	18	19	57	6.36	0.524	0.915	0.778	0.651
ingv_echam4	2	4	6	9	21	7.18	0.428	0.931	0.855	0.641
ipsl_cm4	10	14	19	15	58	5.27	0.654	0.872	0.562	0.608
* miub_echo_g	6	5	7	10	28	6.14	0.550	0.914	0.771	0.660
MME9hi	5.44	10.22	7.11	7.11	29.9	4.93		0.980		
MME9low	4.44	7.33	8.56	7.44	27.8	7.08		0.936		
MME18	4.94	8.78	7.83	7.28	28.8	6.01		0.972		
MME9bi e d	2 70	161	2 02	2 21	7 56	1 37		0.021		
MME9In s.d.	2.75	1 60	2.02	6.20	17.0	1.57		0.021		
MME18 c d	2.30	4.03	5.25	1 98	13.8	1.00		0.000		
	2.70	00	0.20	4.30	10.0	1.00		0.002		
JRA	7	16	12	8	43					

図1 旬別のヤマセ頻度(/20年)。北日本東海 上(142.5°-155°E,40°-45°N平均)の地上風 が北東風である場合をヤマセ出現と定義し、その 頻度を累年の旬平均値から数えた。解析期間は 1981~2000年。MME9hiはSSのスコアが高い9モ デル平均、MME91owはそれ以外の9モデル平均。

図2 MSLP のスキルスコアとヤマセ頻度のスキ ルスコアの散布図。MME9hiを●で示す。ヤマセ頻 度(MSLP)のスキルスコアは0.0(1.0)に近いほ どスキルが高い。

以上で定義された Skill_Yamase と Skill_MSLPを併せた再現スコア(SS)を定義 した。計算方法は、Skill_SLPとSkill_Yamase それぞれで最小値が0、最大値が1になるよ うに正規化した後(表1のAdjustedSkill)、 両者を平均した。結果を表1の最右列に示す。 SSに基づいて、再現性能の高い9つのモデル 群(MME9hi)と低い9つのモデル群(MME9low) に分類した。MME9hi に分類されたモデルを、 表1の最左列に*で示し、図2では●で示す。 ヤマセという短周期の気象現象とその背景場 である気候平均場である MSLP の双方の再現 スキルが高いモデルが MME9hi として選ばれ ている(図2)。

SS に基づいて選択された再現性能の高い モデル群 (MME9hi) の再現性および MME91ow との違いについて述べる。図1には JRA、 MME9hi 平均、MME9low 平均の旬別ヤマセ頻度 が示されている。MME9hi 平均については、頻 度は全体的に少ないものの、季節変化は適切 に再現されている。6月下旬のピーク時には JRA の 2/3 程度のヤマセ頻度がある。梅雨明 け時期に相当する7月下旬にヤマセ頻度が一 時的に減少する特徴がJRAとMME9hiの双方で 見られ興味深い。一方で MME91ow 平均につい ては、ヤマセ頻度が増加する時期が MME9hi に比べて遅い。頻度のピークは MME9hi と同様 に6月下旬に見られるが、頻度はMME9hiより 少なく、その後の頻度の減少が不明瞭である。 MME91owはMME9hiに比べてヤマセ頻度の季節 変化の再現性が悪い。

図3はJRA、MME9hi 平均、MME9low 平均の 月別の MSLP である。MME9hi 平均の MSLP の季 節進行は概して JRA と良く似ている。MME9hi 平均場のSkill_MSLPは0.980で単体モデルの どれよりも高い(表1)。しかしながら、6月 の MSLP を詳しく見ると、JRA で見られる日本 付近の低圧域やオホーツク海付近の高圧域が 不明瞭である。これは梅雨前線やオホーツク 海高気圧の再現性が十分でないことを示して いる。モデルの MSLP のこのようなバイアスは、 モデルのヤマセ頻度が少ないことに関連して いると考えられる (図1、表1)。MME9hi 平 均と MME91ow 平均を比較すると、MME9hi に比 べて、MME91ow 平均の亜熱帯高気圧は強く、 季節進行にともなう亜熱帯高気圧の北上が遅 い。また、MME91ow 平均では8月になっても 高気圧の軸は日本の南海上に見られる。この ような特徴は、MME91ow のヤマセ頻度の季節 変化が不明瞭であった(図1)ことに整合的 である。表1に示されている Skill_MSLP は5

~8月の平均値であるが、通年を通して各月 ごとに見ても、MME9hi 平均のスキルスコアは 10月を除いて MME91ow 平均よりも高い値を示 す。また、MME9hi は MME91ow よりもモデル群 内の Skill_MSLP の数値のばらつきが小さい という特徴がある。表1によれば、Skill_MSLP のモデル群内におけるばらつきは、MME9hi は 0.021、MME91ow は0.059 であり、約3倍の違 いがある。

図3 JRA (左図)、MME9hi 平均(右図の黒色)、 MME9low 平均(右図の灰色)の MSLP。上から順に 5月、6月、7月、8月。いずれも 1981~2000 年平均。

4. 将来変化

図4はMME9hiとMME9lowそれぞれにおける ヤマセ頻度の将来変化である。MME9hiでは5 月はヤマセ頻度が減少すると予測するモデル が多く、8月はすべてのモデルがヤマセ頻度 は増加すると予測している。6月と7月は変 化傾向にモデル間のばらつきが大きいが、6 月はヤマセ頻度の減少、7月はヤマセ頻度の 増加を予測するモデルがやや多い。5~8月 の合計ではモデル間のばらつきが大きく、明 瞭な傾向は見られない。一方 MME91ow では、 5月は MME9hi に比べ変化幅は小さいものの ヤマセ頻度が減少すると予測するモデルが多 いが、8月の変化傾向はモデル間で一致して いない。5~8月の合計では MME9hi と同様に モデル間のばらつきが大きく、明瞭な傾向は 見られない。

図4 ヤマセ頻度の将来変化。(a)はMME9hi、(b) はMME9low。2081~2100年のヤマセ頻度と1981~ 2000年のヤマセ頻度の差。

図5はMME9hiとMME9lowそれぞれにおける MSLPの将来変化(Δ MSLP)である。MME9hi では、5~6月は東シベリアからオホーツク 海で気圧が低下するモデルが多い。7月はオ ホーツク海、8月はオホーツク海からベーリ ング海で気圧が上昇するモデルが多い。加え て、8月は太平洋中緯度(~35N)の気圧 が低下するモデルが多い。このような MSLP の将来変化は、MME9hiのヤマセ頻度の将来変 化(図4)と整合的である。一方 MME9low に おいては、日本周辺では、5月に東シベリア からオホーツク海北部で気圧が低下するモデ ルが多いほかは変化傾向が不明瞭である。こ れはヤマセ頻度の変化傾向が5月を除いて不 明瞭である(図4)ことと整合的である。

図 5 MSLP の将来変化。左列は MME9hi、右列は MME9low。線はモデル平均値(間隔:0.5hPa)、陰 影は正に変化するモデル数(/9モデル)。上から 順に5月、6月、7月、8月。

5. 考察

MME9hiの8月の将来予測では、すべてのモ デルがヤマセ頻度の増加を示した。MME9hiの MSLP変化はこれと整合的で、日本の東海上で 低下、日本の北東海上で上昇するモデルが多 い。これまでに温暖化に伴う東アジアの夏の 気候変化について研究を行った Kitoh et al. (2005)、Kimoto (2005)、Kitoh and Uchiyama

(2006) , Kusunoki et al. (2006) , Arai and Kimoto (2008) はいずれも、東アジアの夏の 天候変化をもたらす要因の一つにエルニーニ ョ的な海面水温変化を挙げている。そこで、 このような熱帯域の変化とヤマセ頻度に関連 する循環場の関係について調べた。図6はマ ルチモデル間における赤道東西気圧傾度(Δ EQ-SOI) と8月の日本東海上のΔMSLPの関係 である。EQ-SOIはVecchi et al. (2006) に より定義された (5°S-5°N, 160°W-80°W) と (5° S-5° N, 80° E-160° E)の海面気圧差 で、ウォーカー循環の強さの指標となる。こ こで、ΔEQ-SOI はその将来変化を意味する。 MME9hi に着目すると、1つのモデルを除いて △EQ-SOI は負の値であり、正の相関関係が存 在する (R=0.69)。このような相関関係は現 実の年々変動においても見られる。図7は NCEP/NCAR における MSLP を EQ-SOI へ回帰し たときの回帰係数分布である。将来変化に見 られる特徴(図5)と同様、EQ-SOI が低下す ると太平洋中緯度の気圧は低下する傾向が見 られる。以上の結果はエルニーニョ的な海面 水温変化に伴うウォーカー循環の弱化が8月 のヤマセ頻度増加の要因の一つであることを 示唆する。

図6 赤道東西海面気圧差の将来変化 (Δ EQ-SOI) と日本東海上の MSLP の将来変化 (Δ MSLP) の散布 図。MME9hi を \bullet で示す。 Δ EQ-SOI は6~8月平均。 Δ MSLP は8月平均。 Δ EQ-SOI および Δ MSLP の定 義領域は本文参照。

興味深いことに、MME9hi におけるヤマセ頻 度の将来変化は、5月に減少、一方で8月に は増加するモデルが多い。MME9hiの MSLP も これに整合的で、オホーツク海付近では5~ 6月に低下し、7~8月に上昇するモデルが 多い。Kusunoki et al. (2006) による 20km 全球大気モデルによる将来予測を見ても、統 計的に有意な変化ではないが、オホーツク海 付近の MSLP は6月に低下、7月に上昇してい る(彼らの Fig. 20)。現実の年々変動に関し ても、EQ-SOI とオホーツク海付近の MSLP の 相関係数の符号が5月と8月では反対の傾向 を示す (図7)。このため、エルニーニョ的な 海面水温変化に伴うウォーカー循環の弱化が オホーツク海付近の MSLP 変化の季節性をも たらしている可能性がある。そのほか、ユー ラシア大陸の昇温(Kimoto, 2005; Arai and Kimoto, 2005)、アジアモンスーンの初夏の季 節進行の遅れ(井上と植田, 2009)、冬季北半 球の正の AO モード強化 (Yamaguchi and Noda, 2006) など、温暖化に伴う大規模な変化の影 響を受けている可能性がある。今後、東アジ アにおける初夏と盛夏の将来変化パターンの 相違について、さらに詳しく調べていく必要 がある。

図7 SLPのEQ-SOIへの回帰。線は回帰係数(間隔:0.5hPa)、陰影は有意水準95%以上。NCEP/NCARの1958~2007年のデータに基づく。回帰係数はこの期間の線形トレンドを除去した後に計算。

MME9hiのヤマセ頻度および MSLP の将来変 化は MME9low に比べてモデル間一致率が高い。

2つの要因が可能性として考えられる。一つ 目は、図6が示すように、将来気候で EQ-SOI が低下するモデルは、MME9hi では8つ、 MME91ow では5つあることから、MME9hiの方 がウォーカー循環の強さの変化傾向に関する モデル間一致率が高いため、である。MME9hi と MME91ow のいずれのモデル群においてもΔ EQ-SOI と日本東海上の∆MSLP に明瞭な正相 関が見られることから分かるように、ウォー カー循環の将来変化と太平洋中緯度の循環の 将来変化は密接に関連している。2つ目の要 因は、MME9hi は気候平均場の形が近いモデル 群だから、である。表1によれば、MSLP 再現 スキルスコアのモデル間標準偏差は、MME9hi では 0.021 である。一方、MME91ow では 0.059 でおよそ3倍の違いがある。気候平均場のパ ターンが異なれば、変動パターンが異なり、 さらに将来変化のパターンも異なる可能性が 十分に考えられる。Arai and Kimoto (2008) は、東アジアの循環場の将来変化が現在気候 における主要変動モードの出現確率密度の変 化として現れることを示している。

6. まとめ

本研究では、CMIP3 に参加した 18 の大気海 洋結合モデルの実験データを解析して、ヤマ セ頻度の再現性評価および将来変化予測を行 った。また、その予測結果を補うため日本を 含む北西太平洋の MSLP の将来変化予測も行 った。

北日本東海上(142.5°-155°E,40°-45°N平均)の地上風が北東風である場合をヤマ セ出現と定義し、その頻度を累年の旬平均値 から数えた。モデルのヤマセ頻度はモデル間 のばらつきが非常に大きく、多くのモデルで JRA に比べて少ない傾向にあった。一部のモ デルはヤマセ頻度の季節変化を適切に再現し ていた。北西太平洋の MSLP の再現性とヤマセ 頻度の再現性には高い相関関係が見られた。

将来予測は、ヤマセ頻度および MSLP の数値 的な再現性能に基づき、再現スキルの高いモ デル群(MME9hi)と低いモデル群(MME91ow) に分類して行われた。MME9hiにおけるヤマセ 頻度の将来予測は、5月は多くのモデルで減 少、8月はすべてのモデルで増加する傾向を 示した。一方、5~8月合計ではモデル間の ばらつきが大きかった。MSLPの将来変化は、 ヤマセ頻度の変化と整合した変化を高いモデ ル間一致率で示した。MME91owのヤマセ頻度 の将来予測は、5月は多くのモデルで減少傾 向だが、8月の変化傾向はモデル間の一致が 悪かった。MSLPの将来変化は、日本周辺では 5月を除いて傾向が不明瞭だった。

MME9hiの8月のヤマセ頻度増加の要因の 一つに、エルニーニョ的な海面水温変化に伴 うウォーカー循環の弱化が示唆された。 MME9hiの将来変化の傾向が高いモデル間一 致率を示した理由として、①ウォーカー循環 の強さの変化傾向に関するモデル間一致率が 高いため、②それぞれのモデルの気候平均場 の形が似ているため、などが考えられる。

謝辞

本研究の実施にあたって、環境省地球環境研 究総合推進費「S-5地球温暖化に係る政策 支援と普及啓発のための気候変動シナリオに 関する総合的研究:(2)マルチ気候モデルに おける諸現象の再現性比較とその将来変化に 関する研究」(サブテーマ代表:高薮縁東大 教授)から支援を受けた。

引用文献

- Arai, M. and M. Kimoto, 2005: Relationship between springtime surface temperature and early summer blocking activity over Siberia. J. Meteor. Soc. Japan, 83, 261-267.
- Arai, M. and M. Kimoto, 2008: Simulated interannual variation in summertime atmospheric circulation associated with the East Asian monsoon. Clim. Dyn., 31, 435-447.
- 井上知栄,植田宏昭,2009: CMIP マルチ気候 モデルにおける夏季アジアモンスーン循環 の季節変化再現性とその将来変化.日本気 象学会 2009 年度秋季大会,A362.

- Kalnay, E., and co-authors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437-471.
- Kimoto, M., 2005: Simulated change of the east Asian circulation under global warming scenario. Geophys. Res. Lett., 32, L16701, doi:10.1029/2005GL023383.
- Kitoh, A., and T. Uchiyama, 2006: Changes in onset and withdrawal of the East Asian summer rainy season by multi-model global warming experiments. J. Meteor. Soc. Japan, 84, 247-258.
- Kusunoki, S., J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi, and R. Mizuta, 2006: Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J. Meteor. Soc. Japan, 84, 581-611.
- Kusunoki, S. and R. Mizuta, 2008: Future changes in the Baiu rain band projected by a 20-km mesh global atmospheric model: sea surface temperature dependance. SOLA, 4, 85-88.
- Onogi, K., and co-authors, 2007: The JRS-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369-432.
- Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183-7192.
- Vecchi G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73-76.
- Yamaguchi, K., and A. Noda, 2006: Global warming patterns over the North Pacific: ENSO versus AO. J. Meteor. Soc. Japan, 84, 221-241.