気象庁1か月予報モデルの潜熱加熱率の検証

新保 明彦・佐藤 均・徳廣 貴之・高橋 清利 (気象庁 気候情報課)

本山 龍也 (東京管区気象台 気候・調査課)

尾瀬 智昭(気象研究所 気候研究部)

中澤 哲夫 (気象研究所 台風研究部)

1. はじめに

現業天気予報から温暖化予測、また異常気 象や気候変動などを対象とした研究におい て、数値予報モデルは重要なツールとなって おり、高精度化は重要な課題である。その高 精度化に向けた課題の一つとして、積雲対流 と雲のパラメタリゼーションの改善が挙げ られる。その開発や検証において、特に雲と その性質(雲量や雲水量、加熱率や放射過程 への寄与など)の鉛直構造については、これ までは集中観測等の限られたデータの利用 に留まっていたが、昨今、TRMM や Cloudsat、 CALIPSO などの衛星による観測の高度化に 伴い、鉛直構造について、より時間的空間的 に詳細なデータを用いることが可能になっ てきている (e.g., Shige et al. 2007; Jiang et al. 2009)

本研究では、2006 年 12 月後半にインド洋 で活発となった MJO の事例を対象として、 TRMM 衛星に基づく潜熱加熱率データ(以 下、TRMM-SLH)の日別値を用い、平均と 出現頻度の鉛直分布を、複数の水平解像度に ついて調べる。また、同じ事例を対象とした 気象庁1か月予報モデルの結果を用いて、熱 帯における積雲対流と雲のパラメタリゼー ションによって生成される加熱率を検証す る。

2. データと実験設定

検証のための潜熱加熱率データとして、 TRMM-SLH (Shige et al. 2004, 2007)を用い

る。TRMM-SLH では、TRMM PR による観 測された降水プロファイルに、雲解像度モデ ルによるシミュレーション結果から求めら れた lookup テーブルを用いて、「潜熱加熱率 (LH)」と「見かけの加熱率(Q₁) - 放射に よる加熱率 (Q_R) (以下、Q_{1R})」 (Yanai et al. 1973)を求めている。ここでは、モデルとの 比較を考慮しQ_{IR}を用いる。水平解像度は0.5 度格子、鉛直層は 19 層(高度 1km までは 0.5km、それより上空は1kmごと)で、日別 で軌道ごとのデータである。解像度依存性を 調べるため、元々の 0.5 度格子(熱帯で約 55km 四方)のデータを、1.0 度格子(約110km; 0.5 度格子 2 × 2 格子)、1.5 度格子(約 165km; 同3×3格子)に変換し検証する。用いる要 素は降水面積と加熱率で、それぞれ対流性降 水、層状性降水に分類されている。今回は加 熱率と降水面積が 0 より大きい格子のみを 対象とする。出現頻度は 2K day⁻¹ ごとに求 める。

予測には、気象庁1か月予報モデル(2007
年3月から2008年2月まで現業運用していたバージョン)を用いる。モデルの水平解像度はTL159(1.125度格子、熱帯で約120km)で、鉛直40層(最上層は0.4hPa)である。物理過程として、積雲対流パラメタリゼーションは予測型 Arakawa-Schubertスキーム(Arakawa and Schubert 1974; Pan and Randall 1998)、雲のパラメタリゼーションは確率密度関数型のスキーム(Smith 1990)である。

(b)予測(初期時刻は2006年12月21日12UTC)。TRMM 3B42、予測共に3時間降水量を基に 描画。図中の四角は今回検証対象としたインド洋域(50°E-100°E、30°S-10°N)を示す。

積雲対流パラメタリゼーション)、層状性降 水(=雲パラメタリゼーション)を用いる。 加熱率は、放射過程(短波、長波)、湿潤過 程(積雲対流、雲)、鉛直拡散、移流項に分 けられるが、ここでは TRMM-SLH の Q_{IR} (= 対流性降水+層状性降水)との比較を考慮し て、「積雲対流+雲+鉛直拡散の合計」を検 証する。以下、この加熱率の合計を dT/dt|DH と示す。ここで鉛直拡散による加熱率はQ_{IR} に含まれるため dT/dt|DH に加えているが、境 界層より上では dT/dt|DH への寄与は小さい。 モデルの出力間隔は3時間ごとで、3時間平 均値を検証に用いる。これは TRMM-SLH デ ータが日別値であるが、実際には衛星がその 軌道を通過した瞬間に対するデータである ことによる。また、今回の検証では3時間降 水量が 1mm day⁻¹ (=0.125mm 3hr⁻¹) 未満の格 子は除外した。これは TRMM-SLH でも非常 に弱い雨を除外(0.3mm h⁻¹を閾値 Shige et al. 2007) していることを考慮している。加熱率 の出現頻度の求め方はTRMM-SLHと同様で ある。

今回対象とした検証領域はインド洋 (50°E-100°E、30°S-10°N; Shige et al. (2007) と同様)で、期間は2006年12月22日から 28日(7日間)、予測の初期時刻は2006年 12月21日12UTCである。この期間はMJO の対流活発な位相がインド洋に存在してい た期間に相当する。図1は、2006年12月22 日の日平均降水量の平面図で、(a)はTRMM による観測された降水量(TRMM 3B42)、(b) は予測である。図中の四角は今回の検証領域 (インド洋)を示し、実況、予測ともインド 洋で対流活動が活発で、予測における降水の 再現性もよいことが確認できる。

3. TRMM-SLH の加熱率

3.1 平均と出現頻度の鉛直分布

図2は、2006年12月22日から28日の7 日間におけるインド洋を対象とした TRMM-SLHのQ_{IR}の平均、図3は同じくQ_{IR} の出現頻度の鉛直分布である。評価する格子 の水平解像度は0.5度、1.0度、1.5度である。 まず0.5度格子に注目する。平均分布(図2 a)では、高度7km付近に加熱のピークが存 在する。これは、Shige et al. (2007)で示され た月平均の結果と矛盾しない。総加熱率への 寄与として、対流性降水は対流圏全体で加熱 の傾向だが、特に対流圏下層にピークがある。 一方、層状性降水は対流圏上層(下層)で加 熱(冷却)となる。

出現頻度分布(図3a)は加熱の小さい範 囲に集中しており、必ずしも平均分布の周辺 で頻度が大きいわけではない。また、対流圏 上層では加熱の範囲のみに出現頻度が見ら れるのに対し、下層(高度4kmより下)で は冷却の範囲に出現頻度が見られる。この冷 却は、層状性降水による寄与が大きいことは 平均分布(図2a)から理解できる。図3に おける緑色の線は、出現頻度を冷却から加熱 の方向に積算したときに、5%と95%の積算 出現頻度を示し、この間は90%の出現確率の

図2 TRMM-SLH の Q_{IR}の平均の鉛直分布。対象期間は 2006 年 12 月 22 日から 28 日の 7 日間 で、領域はインド洋域(50°E-100°E、30°S-10°N)。(a)0.5 度格子、(b)1.0 度格子、(c)1.5 度格子。 横軸は加熱率[K day⁻¹]、縦軸は高度[km]。黒実線に白丸(〇)は総加熱率(対流性降水+層状性 降水)、赤破線は対流性降水、青点線は層状性降水に伴う加熱率。

図3 TRMM-SLHのQ_{IR}の出現頻度の鉛直分布。対象期間と領域は図2と同様。 (a)0.5 度格子、(b)1.0 度格子、(c)1.5 度格子。横軸は加熱率[K day⁻¹]、縦軸は高度[km]。陰影は出現頻度で、2K day⁻¹ ごとに出現頻度を算出(カラーバー参照)。緑線は出現頻度を冷却から加熱の方向に積算した場合の5%と95%の積算出現頻度を示し、その間は90%の出現確率の範囲であることを示す。黒実線に白丸(〇)は総加熱率(対流性降水+層状性降水)の平均。横軸の範囲が図2とは異なるので注意。

範囲であることを示している。これより、平 均分布で総加熱量のピークが見られた高度 7km 付近では加熱率の格子ごとのばらつき が大きいことがわかる。

水平解像度への依存性を見ると、平均分布 (図2)では、総加熱量、対流性降水と層状 性降水の寄与はそれぞれ鉛直方向の分布は 似ているが、0.5度に対して1.0度と1.5度は 加熱と冷却の大きさが小さく、約半分である。 出現頻度分布(図3)についても平均分布と 同様に、その分布の形状は似ているが、格子 ごとのばらつきが0.5度に対して1.0度と1.5 度では小さい。対流圏下層(高度4km以下) では冷却の頻度が見られるのが特徴的だが、 その頻度は0.5度、1.0度、1.5度と水平解像 度が粗くなるほど小さくなる傾向が見られ る。これは対流圏上層の加熱のばらつきが 1.0度と1.5度で似ていることと異なる傾向 である。

図4 図3と同様。但し0.5 度格子について降水面積ごとに集計。それぞれ降水面積が、(a)10-20、 (b)30-40、(c)50-60、(d)70-80、(e)90-100%。(e)のみ横軸の範囲が異なることに注意。

3.2 総降水面積の違いに対する依存性

図4は、0.5度格子の出現頻度分布(図3a) について、各格子における総降水面積ごとに 分けて出現頻度分布を求めたものである。降 水面積が10-20%(図4a)では対流圏下層(高 度4km以下)で加熱が見られ、その後降水 面積が増えるにつれて加熱の頂上の高度が 高くなるとともに対流圏全体で加熱が大き

図5 モデルの予測における dT/dtl_{DH}の(a)平均と、 (b)出現頻度分布の鉛直分布。対象期間と領域は図2 と同様で、初期時刻は2006年12月21日12UTC。 横軸は加熱率[K day⁻¹]、縦軸は高度[km]。黒実線に 白丸(〇)は総加熱率(対流性降水+層状性降水)、 赤破線は対流性降水、青点線は層状性降水に伴う加 熱率。(b)の陰影は出現頻度で、2K day⁻¹ごとに出現 頻度を算出(カラーバー参照)。緑線は出現頻度を 冷却から加熱の方向に積算した場合の5%と95%の 積算出現頻度を示し、その間は90%の出現確率の範 囲であることを示す。横軸の範囲が(a)と(b)で異な るので注意。

くなる(図4b、c)。このときの加熱のピー クは、差は小さいながら高度 4km 付近に存 在するが、一方でその出現頻度のばらつきも 他の高度と比べて大きい。降水面積が 70-80%(図4d)になると加熱の平均のピー クは高度 7km 付近となるが、このときのば らつきは高度 4km 付近の方が大きい。そし て降水面積が 90-100%(図4e)になると加

> 熱の平均、ばらつきともに高度 7km 付近で最も大きくなる。このように降 水面積ごとに分割して評価すると、全 ての格子を用いて評価した場合と比 べて出現頻度の大きい範囲が平均分 布の周囲に存在する傾向が強くなる が、降水面積が大きいときの対流圏下 層(高度 4km 以下)では、加熱の平 均分布が加熱の範囲であるのに対し 冷却の範囲に出現頻度のピークがあ るというような違いも見られる。

4.1か月予報モデルによる加熱率 4.1 平均と出現頻度の鉛直分布

図5は2006年12月21日12UTCを 初期時刻とする1か月予報モデルに おけるdT/dt|_{DH}と対流性降水(積雲対 流パラメタリゼーション)、層状性降 水(雲パラメタリゼーション)の平均 と出現頻度の鉛直分布である。対象期

間、対象領域はTRMM-SLH を評価した期間、 領域と同様である。1か月予報モデルの水平 解像度は 1.125 度格子(TL159)なので、以 下 TRMM-SLH と比較する際には、1.0 度格 子の結果(図2b、3b)を参照する。平均分 布(図5a)では、dT/dt_{DH}について高度7km と 2km にピークが見られる。高度 7km のピ ークは TRMM-SLH の Q_{1R} (図 2 b) と整合的 であるが、高度2kmのピークはTRMM-SLH の Q_{IR}には見られない。このことは、モデル における浅い対流の再現性に問題がある可 能性を示唆している。また、TRMM-SLH の Q_{IR}では高度 13km 以上では加熱は小さいの に対し、モデルでは高度15km付近まで加熱 が見られる。しかしこの対流圏界面付近の差 異については、TRMM-SLH が TRMM PR 降 水データを基にしていることから、対流圏界 面付近の加熱量を精度よく見積もれていな い可能性も指摘されている (e.g., Shige et al. 2009)

図 5 b は、モデルの dT/dt|_{DH}の出現頻度分 布である。TRMM-SLH の Q_{IR}の出現頻度分 布(図 3 b) と比べると、そのばらつきが小 さいこと、対流圏下層で冷却の範囲に出現頻 度が見られないことが特徴的である。

4.2 対流性降水と層状性降水による寄与

加熱率を対流性、層状性に分けて考える (図5a)。対流性降水(積雲対流パラメタリ ゼーション)による加熱率の平均分布は、対 流圏全体で加熱だが、そのピークは高度 6-8kmと高度1km付近に存在し、層状性降水

(雲パラメタリゼーション)による加熱率は、 高度 2km 付近で加熱の他は対流圏全体で冷 却となっており、TRMM-SLH の Q_{IR}の平均 分布(図2b)とは異なる。この違いについ ては、予測精度による影響もあるかもしれな いが、TRMM-SLH で対流性降水と層状性降 水に分類されたものと、モデルの積雲対流と 雲のパラメタリゼーションで表現しようと

しているものの違いの影響もあると考えら れる。例えば高度 7km 付近の加熱のピーク への寄与は、TRMM-SLH では層状性降水、 モデルでは対流性降水(積雲対流パラメタリ ゼーション) である。TRMM-SLH の Q_{1R} の 層状性降水は基本的にアンビルに伴う降水 に対応しているが、その降水に至る雲水は、 一部は積雲対流から供給され、一部はアンビ ルの領域で凝結したものと考えられるが、全 て層状性降水の寄与として加熱率が求めら れている (Shige et al. 2009)。モデルの積雲対 流パラメタリゼーションでは積雲対流から 格子平均場への雲水の放出(デトレインメン ト)が考慮されているが、その凝結に伴う加 熱率は積雲対流パラメタリゼーションによ る効果として求められる。このような違いを 考慮すると、TRMM-SLH とモデルにおいて 対流性降水と層状性降水の加熱率を比較す るときには注意が必要であると考えられる。

4.3 総降水量の違いに対する依存性

3.2節では、TRMM-SLHのQ_{IR}の出現頻度 分布を降水面積ごとに分けて評価した。1か 月予報モデルでは、降水面積は格子平均場の 状況に関わらず 50%で一定と仮定している ため、同様の分類はできない。TRMM-SLH のQ_{IR}における降水面積ごとの総加熱率の 平均分布(図4)を見ると、降水面積が増加 するごとに加熱率の平均分布の鉛直積分、す なわち総降水量も大きくなっていると考え られる。そこで、以下ではモデルの dT/dt|_{DH} について総降水量により分類した結果を示 す。

図6は、モデルの総降水量ごとに分類した dT/dt|_{DH}の出現頻度分布である。TRMM-SLH のQ_{IR}の降水面積による分類(図4)と単純 には比較できないが、ばらつきが小さく加熱 率の平均の周囲に出現頻度が分布している こと、降水量の増加とともに対流圏下層で冷 却の頻度が増加するような傾向が見えない

図 6 図 3 と同様。但しモデルによる予測で、降水量ごとに集計。それぞれ降水量が、(a)10-20、(b)30-40、(c)50-60、(d)70-80、(e)90-100 mm day⁻¹。

ことなどが TRMM-SLH の Q_{IR}の結果と異なる。

また、総降水量が多いほど対流圏下層(高 度 6km 以下) で加熱率が大きくなる傾向も TRMM-SLH の Q_{1R} とは異なる。TRMM-SLH の加熱率の算出の際には、層状性降水として このような背の低い層状性降水の加熱率へ の寄与は小さいとし、アンビルによる寄与を 層状性降水による寄与としているが(Shige et al. 2007, 2009)、モデルでは例えば 70 mm/day を超えるような強い雨は、背の低い 層状性降水の寄与が大きい。但し、その出現 頻度は小さく、全ての格子から求めた出現頻 度分布(図4b)への寄与は小さいことを考 慮すると、TRMM-SLH の Q_{IR} で背の低い層 状性降水の寄与が考慮されていないことと 矛盾はしないのかもしれないが、今回の解析 だけでは判断は難しい。これらについては、 例えば TRMM-SLH の加熱率の鉛直積算から 総降水量に相当する量を算出してそれに基 づいて分類し、TRMM-SLH とモデルで同様 の指標で分類して比較することでより詳し い評価ができると思われる。

5. まとめ

本研究では、2006 年 12 月後半にインド洋 で活発となった MJO の事例を対象として、 TRMM-SLH 日別潜熱加熱率(Q_{1R})を用い、 降水が観測された格子における平均と出現 頻度の鉛直分布を調べた。

平均分布は高度7km付近にピークをもち、 対流性降水の加熱率は対流圏全体で加熱だ が下層にピーク、層状性降水の加熱率は上層 で加熱、下層で冷却の傾向であった。これら は、Shige et al. (2007)で月平均から求められ た傾向と整合していた。出現頻度は平均分布 にピークが見られた高度 7km 付近でばらつ きが大きく、また対流圏下層(高度 4km 以 下)で冷却の範囲に出現頻度が見られた。水 平解像度への依存性は 0.5 度格子に対して 1.0 度、1.5 度格子では平均分布の値は小さく、 出現頻度のばらつきも小さい傾向が見られ た。これらはモデルの中の積雲対流や雲のパ ラメタリゼーションの解像度依存性を考慮 することが重要であることを意味すると考 えられる。また、出現頻度分布の降水面積に 対する依存性としては、特に対流圏下層の冷 却の範囲の出現頻度が、降水面積が大きいと きに現れることが特徴的である。

また、同じ事例について気象庁1か月予報 モデルの湿潤過程に伴う加熱率の平均分布 と出現頻度分布を求め、TRMM-SLH の Q_{IR} の結果と比較した。平均分布では高度 7km 付近にピークが見られる傾向は TRMM-SLH の Q_{IR}で得られた分布と整合していたが、高 度 2km のピーク、高度 13km より上空におけ る加熱などが整合していなかった。出現頻度 分布は、加熱率のばらつきがモデルの方が小 さいこと、対流圏下層に TRMM-SLH の Q_{IR} に見られた冷却の範囲の出現頻度がモデル で見られないことが特徴的であった。降水量 ごとに分類した出現頻度分布からは、ばらつ きの小ささとともに、対流圏下層の冷却の頻 度が降水量に依存せず見られない。

対流性降水と層状性降水の寄与について、 TRMM-SLH とモデルで違いが見られた。こ の違いについてはモデルの予測精度だけで はなく、それぞれが対象としている現象の違 いも影響していると思われる。よって、その 評価においては、単純に結果の違いを見るだ けではなく、それぞれが表している(表そう としている)現象を理解し、その違いを考慮 して比較することが重要であると思われる。

今後はTRMM-SLHとモデルの比較におい て、比較条件をそろえること、他の事例、領 域についての検証を重ね、気象庁1か月予報 モデルの積雲対流と雲のパラメタリゼーシ ョンの改善を図っていきたい。

謝 辞

本研究は、TRMM データ利用公募型共同 研究課題「Toward Further Understanding of MJO from TRMM data and JMA Forecast data」 の支援により実施された。TRMM-SLH デー タは、JAXA/EORC の web サイト (http:// www.eorc.jaxa.jp/TRMM/index_j.html) から取 得した。図の作成には GrADS を用いた。

参考文献

- Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus and cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674-701.
- Jiang, X., D. E. Waliser, W. S. Olson, W.-K. Tao,

T. S. L'Ecuyer, J.-L. Li, B. Tian, Y. L. Yung, A. M. Tompkins, S. E. Lang, and M. Grecu, 2009: Vertical heating structures associated with the MJO as characterized by TRMM estimates, ECMWF reanalyses and forecasts: A case study during 1998-99 winter. *J. Climate*, in press.

- Pan, D.-M., and D. Randall, 1998: A cumulus parameterization with a prognostic closure. *Quart. J. Roy. Meteor. Soc.*, **124**, 949-981.
- Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. *J. Appl. Meteor.*, 43, 1095-1113.
- Shige, S., Y. N. Takayabu, W.-K. Tao, and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Clim., 46, 1098-1124.
- Shige, S., Y. N. Takayabu, S. Kida, W.-K. Tao, X. Zeng, C. Yokoyama, and T. L'Ecuyer, 2009: Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: Comparisons of lookup tables from two- and threedimensional cloud-resolving model simulations. J. Climate, 22, 5577-5594.
- Smith, R. N. B., 1990: A scheme for prediction layer clouds and their water content in a general circulation model. *Quart. J. Roy. Meteor. Soc.*, **116**, 435–460.
- Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.