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Abstract

The role of synoptic disturbances in the formation and maintenance of the blocking flows is

investigated using a barotropic quasi-geostrophic β-channel model.

In the first part of this dissertation, effectiveness of the eddy straining mechanism proposed

by Shutts (1983) is examined in a quasi-linear framework. The model used here possesses two

stationary solutions when the vorticity forcing associated with the analytical modon solution is

assumed: one solution referred to as “blocking solution” closely resembles the modon solution

while another referred to as “zonal flow solution” is characterized by dominant zonal flows.

The infinitesimal transient eddies which mimic synoptic disturbances are generated by a wave-

maker forcing located far upstream of the diffluence associated with the basic flow prescribed

by stable stationary solutions. The effectiveness of the eddy straining mechanism is examined

by comparing the basic flow with the second-order flow induced by the time-averaged potential

vorticity (PV) divergence due to imposed eddies.

Although the distribution of the time-averaged PV divergence for the blocking solution is

PV north/south, divergence/convergence dipole upstream of the diffluence of the basic flow as

suggested by Shutts (1983), the computed second-order flow has a quadruple structure, which

tends to shift the blocking dipole downstream but not enforcing the blocking. On the other hand,

the second-order flow tends to maintain diffluence associated with the zonal solution. Thus, the

effectiveness of eddy straining mechanism depends on the basic flow.

The second-order flow for the blocking solution is also drastically deformed by a small distor-

tion of the PV divergence field due to a small change of the horizontal scale and the meridional

position of the imposed eddies relative to the diffluent region. Thus, it is suggested that the

effectiveness of eddy straining mechanism also depends on the property of synoptic eddies.

Further verification of the above results is made by examining nonlinear evolutions of the

modon solution due to imposed transient eddies. We find again that the eddy straining mecha-

nism is not also effective to maintain the diffluence associated with the modon solution against

the Ekman friction.

In the second part, we examine the formation and the maintenance mechanism of the blocking

flows when there is low-frequency variations which are considered to be an important agent to

the blocking formation in recent studies (Nakamura et al. 1997, Cash and Lee 2000). For
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this aim, we use the β-channel barotropic model with an isolated topography. This model has

stationary solutions and periodic solutions with dominant zonal wavenumber 4 components for

h=900 m in the range of 10 m/s � U � 20m/s, where U is the uniform zonal wind speed.

Several time integrations are performed with imposed transient eddy forcing as in the second

part for basic flows given by these solutions. In the time integration for U � 14 m/s, distinct

diffluent flows similar to the blocking frequently appears and persists more than 10 days. We

find that the formation of the blocking event in this model crucially depends on the wind speed

U, i.e., the basic flow.

Examination of the tendency equation of the streamfunction decomposed into high- and

low-frequency fields by using a 10-day low-pass filter, we find that the advection of the high-

frequency vorticity by the low-frequency wind is the most important for the formation of the

blocking flow. On the other hand, the development of the low-frequency field reveals that the

eddy straining mechanism due to transient eddies is not essential for the formation of the block-

ing, but becomes important for the maintenance of the blocking after the onset of the blocking

event. The important role of the low-frequency variability to trigger the onset of the blocking is

also suggested. Thus, this study indicated that the effectiveness of the eddy straining mechanism

crucially depends on the basic flow.

ii



Contents

1 General Introduction 1

2 On the Effectiveness of the Eddy Straining Mechanism for the Maintenance of

Blocking Flows 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Modon solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Parameter values and truncation level . . . . . . . . . . . . . . . . . . 9

2.2.4 Method for linearized experiments . . . . . . . . . . . . . . . . . . . . 10

2.3 Narrow channel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Multiple stationary solutions . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Second-order flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Wide channel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Sensitivity of the second-order flow to the imposed eddies . . . . . . . . . . . 17

2.5.1 Meridional shift of the wavemaker . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Horizontal size of the wavemaker . . . . . . . . . . . . . . . . . . . . 18

2.6 Quantitative evaluation of the eddy straining effect . . . . . . . . . . . . . . . 19

2.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Effects of Transient Eddies and Low Frequency Variability on Blocking Formation

and Maintenance 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Basic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Effects of transient eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Dependence on the basic flow . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Effectiveness of the eddy straining mechanism . . . . . . . . . . . . . 34

3.4.3 Formation of the blocking flow . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 General Conclusion 43

References 48

iv



Chapter 1

General Introduction

Atmospheric blocking is one of the most prominent phenomena in large-scale atmospheric

motions in the extratropical troposphere. The typical flow pattern of blocking is characterized

by a dipole pressure system with an anticyclone centered to the north of a low pressure area,

which splits the normal westerly jetstream into two distinct, widely separated flows (Rex 1950a,

1950b). This blocking high also has a quasi-stationary feature and tends to persist beyond

the periods associated with synoptic-scale variability. It ’blocks’ the eastward propagation of

weather disturbances and deflects them from the usual storm tracks. This structure appears

repeatedly at fixed geographical locations, off the western margins of the continents (e.g. Tibaldi

and Molteni 1990), which coincide with the exit regions of the major storm tracks in the northern

hemisphere. Moreover, since the occurrence of the blocking episode is intimately connected

with the unusual weather, a better understanding of blocking has been a central objective of

the meteorologists from the age of synoptic meteorology. Recently, the longer term variability

of the occurrence frequency of the blocking events has been also discussed in relation to the

climate change (Palmer 1999).

Although there are many theoretical and observational studies on atmospheric blocking, the

consistent perspective on the dynamics of the blocking has not been established. In particular,

the dynamical mechanism related with the formation, the maintenance, and the decay process of

blocking events has not been fully resolved. However, the transient synoptic-scale disturbances

have been considered to be one of the most important elements to maintain the blocking flow

against surface friction since the work of Green (1977). He suggested that the European block-
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ing anticyclone of July 1976 might be maintained by the meridional momentum flux associated

with the synoptic-scale disturbances deformed by the diffluent field due to blocking. This “eddy

straining mechanism” was further advanced by Shutts (1983). By using an equivalent barotropic

quasi-geostrophic β-channel model, he showed in the framework of the quasi-linear theory that

the imposed infinitesimal transient eddies which mimic the synoptic-scale disturbances are de-

formed by the assumed diffluent basic flow, and the induced flow by the potential vorticity flux

divergence due to deformed eddies tends to enforce the original diffluent flow.

In the same line of approach, Haines and Marshall (1987) also examined the eddy straining

mechanism by adopting the modon solution as a basic flow. The modon is a steady solution of

the inviscid barotropic vorticity equation, and is used as a blocking prototype model in several

theoretical studies on the blocking flow due to its similarity in the flow pattern (e.g. McWilliams

1980; Haines and Marshall 1987; Anderson 1995). Haines and Marshall (1987) also insisted

the efficiency of the eddy straining mechanism for the maintenance of the diffluent flow due

to the modon solution. However, there are several problems in their model experiments as

revealed in this thesis, we think that the efficiency of the eddy straining mechanism has not

been confirmed. In particular, the dependence of the efficiency of the eddy straining mechanism

on the basic flow should be clarified. Furthermore, we should quantitatively evaluate the eddy

straining mechanism in nonlinear framework to examine whether the eddy straining mechanism

could sustain diffluent flows against surface friction.

As for the formation mechanism of the blocking flows, Shutts(1983) also insisted the im-

portance of the eddy straining mechanism by illustrating the build up of diffluent flows from

zonal flows by imposing transient eddies for some parameter ranges. Recently, Nakamura et

al. (1997) indicated by careful analysis on the formation process of the blocking events in the

north Pacific that low-frequency variability are another important factor for the the formation

of blocking. The important role of low-frequency variability in the formation of the blocking

was also reported Cash and Lee (2000) by analyzing output data of a general circulation model.

However, the precise dynamical role of low-frequency variability could not be revealed in these

observational studies since many other processes are involved in the blocking formation of the

real atmosphere. Thus, we need more elaborate model experiments to examine the role of low-

frequency variability. In these experiments, the relevance of the eddy straining mechanism in
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the presence of low-frequency variability to the formation and the maintenance of blocking

flows could be also revealed.

In chapter 2 in this thesis, we will examine the efficiency of the eddy straining mechanism

in the quasi-linear framework as in the previous studies by adopting the modon solution as

the basic flow. In this chapter, a quasi-geostrophic β channel model which is the same as in

Haines and Marshall (1987) except for the meridional model width and horizontal resolution.

Here, we use a wider channel model with a finer horizontal resolution to avoid distortion of the

modon solution. In particular, we discuss the dependence of the efficiency of the eddy straining

mechanism on the properties of the imposed transient eddies by showing a high sensitivity of

second-order induced flows due to the transient eddy potential vorticity flux divergence. Fur-

thermore, by conducting nonlinear experiments, we quantitatively evaluate the eddy straining

mechanism for the maintenance of diffluent flows against surface friction.

The role of low-frequency variability for the formation and the maintenance of blocking

flows will be investigated in chapter 3 by using barotropic β-channel model including an iso-

lated topography with the aid of the bifurcation theory. The interaction between low-frequency

variability and the imposed transient eddies will be shown to be essential for the formation

of blocking events in this model. However, the eddy straining mechanism is irrelevant to this

blocking formation while it plays a decisive role for the maintenance of the blocking flows after

pronounced blocking patterns are established.

The summary of this thesis will be given in chapter 4 with some implication the observa-

tional analysis on the blocking flows. These observational studies (e.g. Illari 1984, Mullen

1986) documented the relevance of the eddy straining mechanism for the maintenance of the

blocking flows by only examining the vorticity flux divergence field due to synoptic-scale ed-

dies. However, since the second-order induced flows due to this field have a high sensitivity

to the assumed basic flows as shown in this study, we cannot diagnose the relevance of eddy

straining mechanism only by the vorticity flux divergence field.
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Chapter 2

On the Effectiveness of the Eddy Straining

Mechanism for the Maintenance of

Blocking Flows

2.1 Introduction

The blocking events in the extratropical troposphere are characterized by a well known vortex

pair with the anticyclone to the north and the cyclone to the south of the ambient jetstreams.

However, the most important feature of the blocking in the context of the dynamic meteorology

is its own unusual persistence beyond the typical time scale of synoptic eddies and of the Ekman

surface friction (Hoskins et al. 1983).

One promising hypothesis regarding the maintenance of blocking against dissipation is the

“eddy straining mechanism” proposed by Shutts (1983). The mutual interaction between syn-

optic transient eddies and stationary blocking flows is the heart of this mechanism; when the

migrating synoptic eddies advected by the zonal flow approach the diffluent straining field up-

stream of the blocking dipole, the eddies undergo an east/west compression and meridional

extension, and are subsequently split meridionally. Associated with this strong deformation, a

region of large eddy enstrophy is formed just upstream of the blocking dipole. By taking the

balance in the time-averaged eddy enstrophy budgets into account, the enhanced dissipation of

the eddy enstrophy has to be canceled by downgradient (i.e., southward) eddy vorticity flux
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[see Eq.(1.2) in Shutts (1983)]. This vorticity flux will in turn form vorticity divergence (con-

vergence) to the north (south) of the axis of the ambient jetstreams. Since this dipole pattern

of eddy forcing has the same polarity as the blocking vortex pair, we could anticipate that mi-

grating synoptic eddies maintain blocking flows in a time-averaged sense against the surface

friction.

By using an equivalent barotropic β−channel model, Shutts (1983) also exemplified the eddy

straining mechanism by denoting similarity between the time-mean second-order circulation

induced by transient eddies and the assumed simple diffluent basic flow prescribed by a sta-

tionary Rossby wave in the framework of a quasi-linear theory. Infinitesimal transient eddies

which mimic synoptic-scale waves were generated by a simple wavemaker forcing located far

upstream of the diffluent region.

Haines and Marshall (1987, hereafter referred to as HM) conducted numerical experiments

to examine the eddy straining mechanism in almost the same framework as in Shutts (1983),

but they adopted an isolated modon solution in a uniform westerly flow as the basic state.

The modon solution with an isolated north-south dipole vortex is a stationary solution in an

inviscid equivalent barotropic atmosphere and resembles the blocking flow pattern in the real

atmosphere (McWilliams, 1980). Because the obtained time-mean second-order circulation in-

duced by imposed infinitesimal transient eddies is very similar to the basic flow, HM concluded

that the eddy straining mechanism does work effectively for the maintenance of the basic flow

comprised of the modon solution.

Although these two studies indicated the important role of the eddy straining mechanism in

the maintenance of the diffluent flow, the sensitivity of the effectiveness of this mechanism to the

assumed basic flow and the property of eddies generated by the wavemaker was not examined.

Moreover, there are some problems in the numerical procedure in HM: first, the channel width

assumed in HM is too narrow to represent the modon solution which is analytically derived

in an infinite β−plane. The streamfunction field of the modon solution in their channel model

is noticeably distorted not only near the channel walls but also in the dipole vortex region.

Second, the linear stability of the basic flow in their channel model was not confirmed. Thus,

the obtained second-order flow induced by perturbations could be contaminated by unstable

modes and does not necessarily represent the effect of the eddies propagating from upstream of
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the diffluent region.

Recently, Maeda et al. (2000) examined the eddy straining mechanism in a barotropic model

on a sphere for realistic basic flows obtained from the observational data. They noted that the

effectiveness of the eddy straining mechanism depends on the assumed basic flows and the

imposed eddies. However, since the assumed basic flows are not any stationary solution, it

is difficult to interpret the role of second-order induced flow by taking the time evolution of

the basic flow itself into account. Moreover, the dependence of the effectiveness of the eddy

straining mechanism on the characteristics of the imposed eddies was not revealed in detail.

In this study, we re-examine the effectiveness of the eddy straining mechanism for the main-

tenance of blocking flows, using an equivalent barotropic β−channel model identical to that

in HM, except with a channel twice as wide. This model has two stationary solutions when a

vorticity forcing associated with the modon solution is assumed as indicated by Pierrehumbert

and Malguzzi (1984) in a barotropic f -plane model: one solution closely resembles the modon

solution while another solution accompanies dominant zonal flows. Thus, by adopting these

stationary solutions under linearly stable conditions as the basic flow, it is possible to argue in

detail the effectiveness of the eddy straining mechanism without suffering from the interpre-

tation of the second-order flow. We will also indicate that the results in HM are considerably

affected by the channel walls in comparison with the results in our wide channel model, and the

eddy straining mechanism is not so effective for the maintenance of the blocking flows. More-

over, the second-order flow is very sensitive to fine structures of the eddy PV flux divergence

field. This sensitivity is designated by changing several properties of the imposed eddies.

Since the analysis in this study is performed restricted within the framework of quasi-linear

theory, the result obtained in this study is valid for infinitesimal transient eddies, and it is nec-

essary to conduct fully nonlinear experiments for the next study. However, we think that the

quasi-linear analysis in this study is helpful to improve our understandings on the time evolution

of blocking flows in the nonlinear experiments.
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2.2 Model

2.2.1 Model description

We use an equivalent barotropic quasi-geostrophic potential vorticity equation on a β-channel

with a vorticity source ∇2ψ∗, Ekman friction, and a scale-selective hyper-diffusion term:

∂q
∂t
+ J(ψ, q) = λ(∇2ψ∗ − ∇2ψ) − ν(∇2)3ψ. (2.1)

Here, ∇2 and J denote the horizontal Laplacian and Jacobian operator, λ and ν are the Ekman

friction and the hyper-diffusion coefficient, ψ the streamfunction, and q the potential vorticity

(PV) defined by

q = f0 + βy + ∇2ψ − γ2ψ. (2.2)

In (2.2), f0 and β are the Coriolis and beta parameters, respectively; γ2 ≡ f 2
0 /gH, where g is

the acceleration of gravity and H is the equivalent depth. Because we will examine isolated

structures in a steady uniform zonal flow U, ψ and q are split into zonal and isolated eddy

components;

ψ(x, y, t) = −Uy + ψ̃(x, y, t),

q(x, y, t) = q∞(y) + q̃(x, y, t),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.3)

where

q∞ ≡ f0 + β∞y = f0 + βy + γ∞2Uy,

and

q̃ = ∇2ψ̃ − γ2ψ̃.

As shown in HM, for the existence of isolated stationary structures like modon solutions,

which satisfy ψ̃→ 0 for r ≡ (x2 + y2)1/2 → ∞, the zonal flow U has to be more barotropic than

the isolated structure, i.e.,

γ∞2 > γ2. (2.4)
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A cyclic boundary condition is imposed at x = −Lxπ and x = Lxπ:

ψ̃(x, y, t) = ψ̃(x + 2πLx, y, t). (2.5)

Since two rigid walls of the channel are assumed at y = −Lyπ/2 and y = Lyπ/2, the following

conditions for the meridional wind and the zonal mean of the zonal acceleration

∂ψ̃

∂x
= 0 and

∫ Lxπ

−Lxπ

∂

∂t
(−∂ψ̃
∂y

)dx = 0, (2.6)

are applied at these walls.

Substituting (2.3) into (2.1), we obtain the following equation for isolated eddy components:

∂q̃
∂t
+ J(ψ̃ − y, q̃ + β∞y) = λ(∇2ψ∗ − ∇2ψ̃) − ν∇6ψ̃, (2.7)

where all variables and constants are nondimensionalized: t by Ly/U, x and y by Ly, ψ̃ and

ψ∗ by ULy, q̃ by U/Ly, β∞ by U/Ly
2, γ by L−2

y , λ by U/Ly and ν by U/Ly
3. We expand ψ̃ in

the following truncated orthonormal functions which satisfy the boundary conditions (2.5) and

(2.6):

FAm =
√

2 sin my,

FKn
m
= 2 cos my sin nαx,

FLn
m
= 2 cos my cos nαx,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(2.8)

where m = 1, 2, · · · ,M, n = 1, 2, · · · ,N, and α = Ly/Lx; the aspect ratio of this channel is given

by 2/α. Substituting the spectral expansion (2.8) into (2.7), a set of M × (2N + 1) ordinary

differential equations for the expansion coefficients xi(t) is obtained.

2.2.2 Modon solutions

For an infinite β-plane, if we assume different linear functional relationships between q and

ψ for the interior and the exterior regions of a circle with the center at the origin (x, y) = (0, 0)

and the radius r0, i.e.,

∇2ψ̃ − γ2ψ̃ + β∞y = a(ψ̃ − y), (2.9)

where

a =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1 for r < r0,

a2 for r > r0,
(2.10)
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there is a set of isolated stationary solutions called “modon” for the inviscid case of λ = ν = 0

in (2.7) (Stern 1975). Isolated eddy components vanish in the far field, i.e., ψ̃ → 0 for r → ∞.

This gives

a2 = −β∞ (2.11)

from (2.9). From the assumption of isolated structures, i.e.,
∫ ∫ |∇ψ|2dxdy is finite, the first

order K-Bessel function is adopted as the solution of r > r0. Moreover, the condition that ψ is

finite at r = 0 implies that a1 < −γ2. Here, the solution can be written as

ψ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{r0

K1(kr)
K1(kr0)

− r}y
r
, for r > r0

k2

κ2
{r − r0

J1(kr)
J1(kr0)

}y
r
, for r < r0

(2.12)

where k2 ≡ γ2 − β∞, κ2 = −(γ2 + a1), K1 and J1 are the first order K- and J-Bessel function,

respectively. Finally, the condition that the velocity is continuous at r = r0 yields the relation

between 1 and r0.

2.2.3 Parameter values and truncation level

In the numerical experiments, we use the following parameter values according to HM:

U = 13.8 ms−1,

β = 1.6 × 10−11 m−1s−1,

β∞ = 1.2β m−1s−1,

Lρ ≡ 1/γ = 845 km,

α1 = −3.9 × 10−12 m−2,

2πLx = 42, 000 km.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

With these parameter values, Eq. (2.7) permits the existence of an analytical modon solution

(2.12) with the radius of r0 =2,430 km. In order to examine the effect of the lateral bound-

aries on the model behavior, we analyze the model behaviors with two different meridional

channel widths: narrow channel (πLy =10,500 km) corresponding to HM and wide channel

(πLy =21,000 km).

The truncation wave number adopted for the narrow channel is M = 21, N = 42 while

M = 42, N = 42 for the wide channel. Thus, the horizontal resolution is the same for these two
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models and is fine enough to represent the dynamics of the modon solution (see McWilliams et

al. 1981). The hyper-diffusion coefficient ν is given to have an e-folding time of 1 day for the

component of M = 21 and N = 42 for both models.

2.2.4 Method for linearized experiments

In order to assess the role of the migrating disturbances, which correspond to the synoptic

eddies, in the maintenance of the basic flow, we examine the time-mean flow induced by in-

finitesimal disturbances generated by an imposed wavemaker forcing. For this analysis, we use

the following perturbation expansion by a small parameter ε:

ψ̃(x, y, t) = ψ0(x, y) + εψ1(x, y, t) + ε2ψ2(x, y, t) + O(ε3),

q̃(x, y, t) = q0(x, y) + εq1(x, y, t) + ε2q2(x, y, t) + O(ε3).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.14)

Substituting (2.14) into (2.7), and equating terms in the same order of ε gives

∂q0

∂x
+ J(ψ0, q0) + β∞

∂ψ0

∂x
= λ(∇2ψ∗ − ∇2ψ0) − ν∇6ψ0, (2.15)

(
∂

∂t
+
∂

∂x
)q1 + J(ψ1, q0) + J(ψ0, q1) + β∞

∂ψ1

∂x
+ λ∇2ψ1 + ν∇6ψ1 = F1, (2.16)

and

(
∂

∂t
+
∂

∂x
)q2 + J(ψ2, q0) + J(ψ0, q2) + β∞

∂ψ2

∂x
+ λ∇2ψ2 + ν∇6ψ2 = −J(ψ1, q1). (2.17)

Here, the vorticity forcing ∇2ψ∗ is assumed to have a magnitude of O(1) such that the basic

flow ψ0 is a stationary solution of (2.15), and F1 is an imposed wavemaker to generate migrating

eddies ψ1. We further prescribe ∇2ψ∗ by the vorticity distribution associated with the modon

solution (2.12). Thus, we can expect that a stationary solution similar to the modon solution

(2.12) is obtained as a basic flow ψ0 in the channel model. We use the revised Marquadt method

to obtain stationary solutions of (2.15) (see Mukougawa 1988).

The linear stability of the basic flow ψ0 for infinitesimal disturbances ψ1 is examined by

using (2.16) without wavemaker forcing, i.e., F1 = 0. By using the spectral expansion (2.8),

Eq. (2.16) without F1 is symbolically written as:

dx
dt
+ Ax = 0, (2.18)
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where the vector x(t) consists of the expansion coefficients of eddy streamfunction ψ1, and A

is an M(2N + 1) × M(2N + 1) Jacobian matrix. The stability property of the basic state ψ0 is

examined by obtaining eigenvalues of the matrix A.

Now, the time-mean effect of infinitesimal disturbances generated by the wavemaker F1 on

the basic flow ψ0 is assessed in the framework of a quasi-linear theory by the following pro-

cedures. First, we perform time integration of (2.16) for 50 days by using a 4th-order Runge-

Kutta method with an imposed wavemaker F1. According to Shutts (1983), the wavemaker is

prescribed by

F1 = F̃1 sin{π(x − x0)
Δx

} cos{3π(x − x0 − t)
Δx

} sin{π(y − y0)
Δy

}, (2.19)

for x0 < x < x1; Δx = x1−x0; y0 < y < y1; Δy = y1−y0 where F̃1 is a constant; otherwise F1 = 0.

Note that F1 generates disturbances propagating eastward with the background uniform zonal

wind speed (unit). The rectangular wavemaker region defined by x0, x1, y0 and y1 is located

well upstream of the model origin (x, y) = (0, 0) where the diffluence associated with the basic

flow exists.

Second, the last 45 days of the integration period, which are quite long compared with the

characteristic period of synoptic eddies, are used to compute the time-mean eddy PV flux di-

vergence J(ψ1, q1), where the overbar means the time-average. Finally, we obtain the induced

time-mean second-order flow ψ2 by solving the time-averaged equation of (2.17):

∂q2

∂x
+ J(ψ2, q0) + J(ψ0, q2) + β∞

∂ψ2

∂x
+ λ∇2ψ2 + ν∇6ψ2 = −J(ψ1, q1). (2.20)

Note that the eddy PV flux divergence ∇· (v1q1), which is also expressed as J(ψ1, q1) by using

the wind vector v1 = (−∂ψ1/∂y, ∂ψ1/∂x), acts as the forcing term for ψ2. From the similarity

of the spatial structure of ψ2 to the basic flows, we could infer a tendency of the time evolution

of the basic flow against the dissipative process due to an ensemble effect of imposed transient

eddies.

The steady response of the second-order flow ψ2 due to −J(ψ1, q1) in (2.20) is also examined

by the singular value decomposition (SVD) analysis (see Navarra 1993; Itoh and Kimoto 1999;

Maeda et al. 2000). The analysis is based on the following symbolically written equation (2.20):

Ay = f , (2.21)
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where the vectors y and f represent the spectral expansion coefficients of ψ2 and −J(ψ1, q1),

respectively; the matrix A in (2.21) is the same that in (2.18). Then, the SVD of the matrix A

gives the expansion of the induced second-order flow y in terms of the right singular vectors ξ i

(i = 1, 2, · · · ,M(2N + 1)):

y =
M(2N+1)∑

i=1

〈 f · ζi〉
σi
ξi, (2.22)

where 〈·〉 indicates the inner-product, σi (0 ≤ σ1 ≤ σ2 · · · ) and ζi are the i-th singular value and

the i-th left singular vector. The singular values satisfy AATζi = σ
2
i ζi or AT Aξi = σ

2
i ξi, where

the superscript T means the transpose. Sets of vectors {ξi} and {ζi} construct orthonormal basis,

respectively.

From (2.22), we find that the flow pattern associated with ξ j will dominate the ψ2 field if

the coefficient 〈 f · ζ j〉/σ j of this mode j is larger than the amplitude of the other modes i for

i � j. In particular, if the smallest singular value σ1 is much smaller than the others while the

projection of the forcing f onto each left singular vector ζi, 〈 f ·ζi〉, has a comparable magnitude

among all modes, the second-order flow ψ2 becomes very similar to ξ1; this is expected when

the basic flow ψ0 satisfies near-resonant condition, i.e., σ1 ≈ 0. For near-resonant basic flows,

detailed structures of the forcing f are irrelevant to determine the spatial structure of ψ2 field

except for the sign of 〈 f · ζ1〉 which controls the polarity of ψ2.

2.3 Narrow channel model

In this section, we describe the results in the narrow channel model with lateral width πLy =

10, 500 km which is the same as that in HM.

2.3.1 Multiple stationary solutions

We numerically obtain stationary solutions of (2.15) by assuming two initial guesses: one is

the modon solution of (2.12) and the other is ψ0 = 0. Obtained branches of stationary solutions

are shown in Fig. 2.1 where the Ekman friction coefficient λ is used as a bifurcation parameter

and the ordinate denotes the kinetic energy of stationary solutions ψ0 normalized by that of

the analytic modon solution of (2.12). In this parameter range, the multiplicity of stationary
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solutions is clearly observed. Since the flow pattern closely resembles the analytical modon

solution, the upper branch solutions (Fig. 2.2a) will be referred to as “blocking solution”. On

the other hand, the solutions belonging to the lower branch (Fig. 2.2b) have relatively weak

zonally asymmetric components, and uniform zonal flow components dominate in the flow

pattern. Thus, we will call this solution “zonal flow solution”. With the increase of λ, the lower

branch approaches the upper branch very closely, but a bifurcation point does not exist in this

parameter range. The existence of similar multiple equilibria of isolated solutions was reported

in Pierrehumbert and Malguzzi (1984) for an f -plane barotropic model, and also in Yamagata

et al. (1990) for a β-plane equivalent barotropic model.

The linear stability property of stationary solutions is also depicted by two different symbols

in Fig. 2.1. The blocking solution becomes unstable for λ < 0.13 day−1, while the zonal flow

solution is stable in this parameter range. The growth rate of the most unstable mode for the

blocking solution becomes larger with the decrease of λ as shown in Fig. 2.3a: when λ = 0, the

growth rate attains the maximum value of 0.15 day−1; this unstable mode is stationary with zero

frequency.

We also confirm the instability of the analytical modon solution (λ = ν = 0) in a higher

horizontal resolution model with M = 42 in (2.8). The numerically obtained fastest growing

mode (Fig. 2.3b) for the analytical modon solution has a large amplitude in the center of the

channel. The flow pattern of this unstable mode is similar to that obtained by the time integration

from the initial condition composed of the westward-propagating modon solution as shown in

Nycander (1992), which also gave a theoretical proof on the linear instability of the modon

solution.

2.3.2 Second-order flow

Now, we will examine the second-order induced flow ψ2 associated with transient perturba-

tions forced by a prescribed wavemaker of (2.19). When the basic flow is unstable to infinites-

imal perturbations by assuming a small value of λ, it is difficult to assess the effect of imposed

perturbations on the basic flow because the obtained induced flow will be contaminated by

growing unstable modes. On the other hand, if we assume a large Ekman friction coefficient λ

to assure the stability of the basic flow, the transient eddies forced far upstream of the diffluent
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region of the basic flow will fade away before reaching the diffluence and producing significant

vorticity flux. Thus, we set λ = 0.12 day−1 (denoted by open circles in Fig. 2.1) at which the

blocking solution is marginally stable.

First, we consider the effect of perturbations on the blocking solution. Figure 2.4a shows

an instantaneous field of the perturbation streamfunction ψ1 at day 30 superimposed on the

basic flow ψ0. The hatched rectangular area denotes the wavemaker region given by (2.19),

where we set αx0 = −3π/4, αx1 = −π/4, y0 = −π/6, y1 = π/6. The zonal wavelength and

the period of the eddies forced by this wavemaker are 7,000 km and 5.8 days. The meridional

wavelength of this perturbation is the same as the zonal wavelength i.e., the imposed eddy is

isotropic. Approaching the diffluent region, perturbations expand in the lateral direction and

shrink in the zonal direction. We also see a phase tilt associated with the differential advection

by the basic flow ψ0 in the upstream of the diffluence. The time-averaged PV flux divergence

J(ψ1, q1) in (2.20) associated with the perturbations is shown in Fig. 2.4b where the wavemaker

region is masked. In the upstream of the diffluence, the horizontal distribution of eddy PV flux

divergence is anti-symmetric with respect to the center of the channel y = 0. There is enhanced

divergence to the north of y = 0 and convergence to the south in just upstream of the diffluence.

Second-order induced flow ψ2 forced by the eddy PV flux divergence in the downstream re-

gion of x1 in Fig. 2.4b is shown in Fig. 2.4c. The flow pattern is characterized by a north/south,

anticyclonic/cyclonic vortex dipole, and is almost identical to that obtained in HM. Since the

second-order flow has a similar horizontal structure to the basic flow and the polarity is also the

same, we can anticipate that the transient disturbances have a tendency to enforce the diffluence

of the basic blocking flow and the eddy straining mechanism does work in the narrow channel.

In order to investigate the sensitivity of the second-order flow ψ2 to the characteristic of the

imposed forcing, we proceed the singular value decomposition analysis for the matrix A in

(2.18). Figure 2.5a indicates that the smallest singular value σ1 is almost two orders of mag-

nitude smaller than the second smallest one. Moreover, the right singular vector ξ1 associated

with σ1 has a similar horizontal pattern to the second-order flow ψ2 in Fig. 2.4c. On the other

hand, the corresponding inner-product 〈ζ1 · f 〉 has a comparable magnitude with 〈ζi · f 〉 for

i � 1 (not shown). Thus, in this narrow channel, we find that the basic flow is in a near-resonant

condition, and the induced second-order flow is irrelevant to the characteristic of the eddy forc-
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ing except for the polarity of the dipole structure. We also confirmed that the results for the

blocking basic flow do not depend on the Ekman friction λ when the basic flow is stable.

We have also performed the analysis on the second-order flow for the zonal flow solution but

refrain from describing the results here because the obtained results are identical to those in the

wide channel model documented in the next section.

2.4 Wide channel model

The streamfunction of the blocking solution in the narrow channel is noticeably deformed

from the analytical modon solution, especially near the lateral boundaries. In order to reduce

the influence of the boundaries to the results, we extend the channel width into twice the narrow

channel width (πLy =21,000 km). We also increase the lateral truncation wave number M in

(2.8) from 21 to 42 so as to retain the same horizontal resolution as in the narrow channel.

Figure 2.6 shows the bifurcation diagram of the blocking solution and the zonal flow solution

as in Fig. 2.1. The distortion of the streamfunction of the blocking solution (Fig. 2.7a) is rather

reduced not only near the boundaries but also in the center of the channel: the amplitude of the

dipole structure is slightly larger in the wide channel. Note that the contour interval in Fig. 2.7

is one half of that in Fig. 2.4 due to the nondimensionalization. The structure of the zonal flow

solution (Fig. 2.7b) is noticeably unchanged. The linear stability property of both stationary

solutions remains almost the same as that in the narrow channel: the blocking solution becomes

unstable when λ is smaller than 0.13 day−1; the zonal flow solution is stable in the parameter

range examined in this study. The analytical modon solution represented in the wide channel

is also linearly unstable to infinitesimal perturbations. Thus, we could infer that the lateral

boundaries in this channel model does not directly affect the stability property of the analytical

modon solution. The growth rate and horizontal structure of the most unstable mode for the

analytical modon solution are almost the same as those in the narrow channel.

Figure 2.8a shows an instantaneous streamfunction field of the perturbation ψ1 at day 30

when the blocking solution is assumed as the basic flow. Since we focus upon the behavior in

the center of the channel, only the central domain of −π/4 < y < π/4 in the model will be

shown in the following figures. The eddies are forced by the wavemaker F1 of which region is
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denoted by the hatched rectangle in Fig. 2.8; the wavemaker region has the same dimensional

horizontal size as in the narrow channel model. The deformation of eddy structure and the

horizontal distribution of the accompanied PV flux divergence upstream of the diffluence (Fig.

2.8b) are almost the same as those in the narrow channel model.

However, we find a remarkable difference in the second-order flow ψ2 induced by the eddy

forcing. In Fig. 2.8c, a quadruple structure is evident instead of the dipole structure in Fig. 2.4c.

The downstream north-south vortex pair has a comparable magnitude to that of the upstream

vortex pair. The polarity of these vortex pairs is opposite to each other, and the second-order

flow has a tendency to shift the basic blocking vortex pair downstream instead of enforcing

them.

The difference in the response of the second-order flow to almost the same PV flux divergence

is also confirmed in the singular value decomposition analysis in Fig. 2.9a for the wide channel.

The smallest singular value σ1 is several times as large as that in the narrow channel, and

its magnitude is comparable to the second smallest singular value. Although there is a weak

quadrupole pattern in the streamfunction field of the first right singular vector ξ1 (Fig. 2.9b),

the zonal flow component which is absent in Fig. 2.8c dominates in its flow pattern. Moreover,

the magnitude of the coefficient 〈ζ1 · f 〉/σ1 in (2.22) associated with ξ1 is not dominant as shown

in Fig. 2.10 but 〈ζ3 · f 〉/σ3 and 〈ζ11 · f 〉/σ11 are significant instead. Each pattern of ξ3 and ξ11

has a quadruple structure (not shown). Thus, the second-order flow ψ2 for the blocking solution

in the wide channel has relatively strong sensitivity to the characteristic of the imposed eddy

forcing. This implies that the resonant enhancement mechanism of the blocking solution by the

transient eddies found in the narrow channel as well as in HM is due to the narrow meridional

extent of the channel model. We will further examine the sensitivity of the second-order flow

to several eddy forcing characteristics in the next section.

Figure 2.11a shows an instantaneous perturbation streamfunction field at day 30 when the

zonal flow solution (Fig. 2.7b) is assumed as the basic flow ψ0. The perturbations induced

by the same wavemaker F1 (hatched region) as in Fig. 2.8 have rather complicated structure.

Eddies in the center of the channel become fragmented associated with the stagnation region

of the basic flow, and fade away due to the Ekman friction and the biharmonic viscosity. On

the other hand, the meridionally split eddies due to weak diffluence of the basic flow survive
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further downstream compared with those for the blocking solution. Thus, the distribution of the

time-mean eddy PV flux divergence (Fig. 2.11b) is concentrated in the center of the channel and

has a smaller meridional scale compared with that for the blocking solution (Fig. 2.8b). The

second-order flow induced by the time-mean eddy PV flux divergence is shown in Fig. 2.11c.

Because its horizontal pattern is similar to the zonal flow solution (Fig. 2.7b) and its polarity is

also the same, it is suggested that the imposed perturbation has an effect to maintain the basic

zonal flow solution. The singular value decomposition analysis of the zonal flow solution shows

that the resonant enhancement mechanism of the basic flow is not efficient, and the second-order

induced flow crucially depends on the characteristic of the imposed wavemaker (not shown).

2.5 Sensitivity of the second-order flow to the imposed eddies

The results in the previous section suggest that the second-order induced flow for the block-

ing basic flow is very sensitive to the characteristic of the imposed eddies. In order to illustrate

this high sensitivity, we examine the dependence of the second-order flow on the meridional

location and the horizontal size of the wavemaker. The blocking solution is assumed as the

basic flow in this section.

2.5.1 Meridional shift of the wavemaker

Figure 2.12 shows a result when the wavemaker is shifted to the south by 15% of the modon

radius r0. The instantaneous streamfunction field of ψ1 at day 30 (Fig. 2.12a) is almost identical

to that in Fig. 2.8a except that eddies in the southern jetstreams retain larger amplitude com-

pared with those in the northern jetstreams. The eddy PV flux divergence pattern (Fig. 2.12b) is

also almost identical to that in Fig. 2.8b: a north/south, divergence/convergence dipole pattern

resides upstream of the diffluence. On the other hand, the ψ2 flow pattern in Fig. 2.12c is dras-

tically deformed in comparison with Fig. 2.8c: a dominant anticyclonic vortex is located near

y = 0 instead of the quadrupole pattern, therefore this second-order flow tends to shift the vortex

pair of the blocking basic flow southward from its original position. This second-order flow will

destroy the blocking dipole since the anti-symmetry with respect to y = 0 in the blocking dipole

is totally lost in Fig. 2.12c; the meridional shift of the wavemaker only by 5% of the modon

17



radius is enough to extinguish the anti-symmetry of the second-order flow. This is an example

of high sensitivity of the second-order flow to the meridional shift of the wavemaker.

2.5.2 Horizontal size of the wavemaker

Next, we examine the sensitivity of the second-order flow to the horizontal scale of the im-

posed wavemaker Δx and Δy in (2.19) while the aspect ratio of the wavemaker is kept constant

as in section 2.4.

The further increase of the horizontal scale of the wavemaker does not give rise to qualitative

change in the second-order flow; the second-order flow retains a tendency to advect the blocking

dipole downstream (not shown). On the other hand, the decrease of horizontal scale of the wave-

maker brings about a drastic change in the second-order flow. Figures 2.13 and 2.14 show the

results for the prescribed zonal wavelength of eddies are 6,300 km and 5,600 km, respectively.

The horizontal deformation of eddies associated with the blocking dipole in these two figures is

apparently the same. The time-mean eddy PV flux divergence in Fig. 2.13b is also almost the

same as that in Fig. 2.14b except that there is a slight enhancement of the north/south, diver-

gence/convergence along the split jets around the blocking dipole in the former. However, the

second-order flow is distinctively different between them; in Fig. 2.13c, a weak dipole with the

opposite polarity to the blocking dipole exists within the dipole of the basic flow while strong

dipoles with the same polarity as the blocking resides outside the dipole of the basic flow. This

pattern will tend to diffuse the vortex pair associated with the blocking; The flow in Fig. 2.14c

has a quadrupole structure with the opposite polarity to that in Fig. 2.8c, and tends to shift the

blocking dipole upstream.

These two experiments suggest that a small difference in the time-mean eddy PV flux diver-

gence has a possibility to raise a large difference in the second-order induced flow. Moreover,

the effectiveness of the eddy straining mechanism is very sensitive to parameters prescribing

the horizontal structure of migrating eddies.
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2.6 Quantitative evaluation of the eddy straining effect

In sections 3,4 and 5 in this chapter it has been shown that the effectiveness of the eddy

straining mechanism depends on the basic flow and the horizontal structure of the prescribed

eddy forcing, and that the modon solution is not maintained by the eddy straining mechanism

in the quasi-linear framework studied in sections 3, 4 and 5. Here, we will re-examine the eddy

straining mechanism in fully nonlinear framework including the interaction between the basic

flows and transient eddies, with particular we pay attention to the eddy straining mechanism

compared with the dissipation of diffluent flow due to the Ekman friction.

We use the following fully nonlinear, nondimensionalized PV equation with the imposed

eddy forcing term F:

∂q̃
∂t
+ J(ψ̃ − y, q̃ + β∞y) = λ(∇2ψ∗ − ∇2ψ̃) + F − ν(∇2)3ψ̃, (2.23)

where ψ̃ and q̃ are the streamfunction and the PV (see section 2 in detail). Based on the time

integration of Eq. (2.23), the eddy straining effect is quantitatively evaluated by examining the

time evolution of the PV field from the initial condition given by the blocking solution (Fig.

2.2a). If the dipole structure associated with the blocking solution will be maintained against

the dissipation without the forcing term λ∇2ψ∗ in Eq. (2.23), we could conclude that the eddy

straining mechanism is effective to maintain the diffluent flow.

Parameter values, boundary conditions and time integration scheme are the same as those

in Section 2 in this chapter: the Ekman friction coefficient λ is 0.13 day−1 corresponding to

e-folding time of 7.7 days; the hyper-diffusion coefficient ν is determined to have an e-folding

time of 1 day for the wave component (m, n) = (21, 42). The blocking solution adopted for the

initial condition is linearly stable for these parameter values. The eddy forcing F is imposed in

the rectangular region in Fig. 2.15a, and is given by the following wavemaker forcing:

F =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
F̃ sin{π(x − x0)

(x1 − x0)
} cos{3π(x − x0 − t)

(x1 − x0)
− θ} sin{π(y − y0)

y1 − y0
} for x0 � x � x1, y0 � y � y1

0 elsewhere.

(2.24)
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The forcing function of Eq. (2.24) is almost the same as in Eq. (2.19) except for the phase

factor θ, which specifies phase of the imposed transient eddies.

The amplitude of the wavemaker F̃ is set at 5.2 ×10−11 s−2 (120.0 in nondimensionalized unit)

which will enforce the maximum value of the relative vorticity ∇2ψ̃ for the blocking solution

during 9.8 days, corresponding to 5.2×10−11 s−2. This value of F̃ is 1.3 times larger than the

maximum value of the dissipation rate λ∇2ψ̃ for the blocking solution. We have also performed

another experiment with F̃ = 60.0. Results of these two experiments are qualitatively the same,

and we only describe the results for F̃ = 120.0 in the following.

In the quasi-linear framework, the effectiveness of the eddy straining mechanism is evaluated

by examining the second-order flow induced by the time-mean PV flux divergence associated

with transient eddies for a fixed basic flow. In the nonlinear experiments, however, this method

based on the time-mean is not applicable to evaluate the eddy straining mechanism since the

“basic flow” will evolve in time during the period of the time average. Thus, we use the fol-

lowing “ensemble mean” technique to obtain the phase-independent effect of transient eddies

on the basic flow. The average over the time integrations with different phase factor θ in F of

Eq. (2.24): we perform 20 integrations by changing the phase factor θ by π/10 in the range of

0 � θ < 2π. The vorticity forcing ∇2ψ∗ is also retained during the first 3.3 days in the integration

to maintain the diffluent flow until the maximum (or minimum) value of PV associated with the

imposed transient eddy encounters at the diffluent region at αx = −8/π, which indicated by the

vertical thick line in Fig. 2.15a.

The time evolution of the PV field q̃ of the ensemble mean of each integration with the

transient eddy forcing of the zonal wavelength of 7000 km is shown in Fig. 2.15a. In this case,

αx0 = −3π/4, αx1 = −π/4, y0 = −π/6, y1 = π/6 in Eq. (2.24). The vorticity forcing ∇2ψ∗ is

removed at day 0. On the other hand, time evolution of the PV for the integration without the

transient eddy forcing is shown in Fig. 2.15b. The maximum value of q̃ in the ensemble mean

decreases monotonically (Fig. 2.15a) at almost the same rate as that in the time integration

without transient forcing (Fig. 2.15b) due to the dissipation terms. The horizontal pattern in PV

is also very similar to each other except for a little deformation in the diffluent region in Fig.

2.15a. Thus, we find that the eddy straining mechanism is not effective to maintain the diffluent

field against the dissipation.
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To further evaluate the quantitative contribution of the eddy straining mechanism in the non-

linear framework, time evolution of the maximum value in q̃ for transient eddy forcing with

zonal wavelength of 7,000km (asterisk), 6,300km (open circle) and 5,600km (open square) is

shown in Fig. 2.16, respectively. The result for integration without eddy forcing is also shown

by closed circles. From this figure, we find that the dipole structure in the experiments with

transient eddy forcing decreases faster than that without eddy forcing. This fact does not de-

pend on the horizontal size of the imposed transient eddies. Thus, we confirmed that the eddy

straining mechanism in the nonlinear framework is not effective to maintain the dipole structure

of the blocking solution compared with the dissipation rate due to the Ekman friction. This is

consistent with the results obtained in the quasi-linear framework in section 2.5.
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2.7 Concluding Remarks

In order to examine the effectiveness of the eddy straining mechanism on the maintenance

of the blocking flow proposed by Shutts (1983), we investigate the mutual interaction between

migrating eddies and stationary basic flows by using an equivalent barotropic β-channel model,

which is all the same as in HM except that the channel width is enlarged twice to reduce the

distortion of the flow field near the channel walls. The eddies which mimic the synoptic-scale

waves are generated by an upstream wavemaker forcing. Their amplitude is assumed to be small

enough so that the interaction is described by a quasi-linear framework as in HM. The model

possesses two stationary solutions accompanying isolated structures in prescribed uniform west-

erlies when the vorticity forcing associated with the analytical modon solution is assumed: a

“blocking solution” which closely resembles the modon solution and a ”zonal flow solution”

which is characterized by dominant zonal flows. The effectiveness of the eddy straining mecha-

nism is assessed by the resemblance between the basic flow and the second-order flow induced

by the time-averaged eddy potential vorticity (PV) divergence as in HM. The following results

are obtained.

• When the basic flow is prescribed by linearly stable blocking solutions, the second-order

flow induced by eddies has a quadruple structure, which tends to shift the blocking dipole

downstream, instead of the dipole structure enforcing the blocking as shown in HM. On

the other hand, the time-averaged eddy PV flux divergence has almost the same pattern

as in HM: north/south, divergence/convergence dipole upstream of the diffluence of the

basic flow.

• The superficial enhancement of the blocking dipole by the eddy straining mechanism

indicated by HM is attributed to the false resonance characteristic of the basic flow due to

the narrow channel model. This is also confirmed by the SVD analysis.

• The second-order flow for the linearly stable zonal flow solutions has a tendency to en-

force the weak diffluence associated with the basic flow. The enhancement is not due to

the resonant property of the basic flow but depends on the properties of imposed eddies.

• The second-order induced flow for the blocking solution is drastically deformed by a
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negligible distortion of the eddy PV flux divergence field due to a small change in the

property of imposed eddies, such as their horizontal scale and the meridional position of

the trains of eddies relative to the diffluent region.

• The eddy straining mechanism is not effective to maintain the dipole structure of the

blocking solution against the dissipation.

Thus, our study revealed that the eddy straining mechanism for the maintenance of the block-

ing flow against the dissipation is not so effective as indicated in the previous studies, and its

effectiveness is also very sensitive to the properties of migrating eddies as well as the assumed

basic flow.

Furthermore, the high sensitivity of the second-order flow to a fine structure in the eddy PV

flux divergence field will suggest that the downgradient eddy PV flux divergence structure up-

stream of the blocking flow does not necessarily imply the enforcement of the blocking flow by

the synoptic eddies; observational studies (e.g., Shutts 1986; Mullen 1987) usually insist the en-

forcement only by indicating such a PV flux divergence field, or the corresponding geopotential

tendency field simply obtained with an inverse Laplacian operator. In order to designate a large

difference between the second-order flow and the tendency field from the PV flux divergence

field, Fig. 2.17a and Fig. 2.17b show the streamfunction tendency fields ∂ψ̃/∂t obtained by

−∇−2J(ψ1, q1) for the eddy PV flux divergence field in Fig. 2.13b and Fig. 2.14b, respectively.

These two streamfunction fields are too similar to be distinguished while there is noticeable

difference in the second-order flow as already shown. This difference suggests the importance

of zonal asymmetry of the basic flow in computing the second-order flow. Moreover, the high

sensitivity of the second-order flow to a fine structure of the eddy PV flux divergence implies

that a data set with high spatial resolution is necessary to assess the role of the synoptic eddies

on the maintenance of the blocking flow although a resultant second-order flow has a relatively

large horizontal scale.

These results obtained in the framework of a quasi-linear theory are confirmed by the non-

linear framework. Since it is suggested in this study that the effectiveness of the eddy straining

mechanism depends on the basic flow, the examination of the eddy straining mechanism for

another basic flow is necessary to understand further the role of the synoptic disturbances on
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the blocking flow. Moreover, the possibility to form the blocking flows only by the synoptic

eddies from basic states with prevailing zonal flows suggested by Shutts (1983) has to be also

examined in order to reveal the role of synoptic eddies in the dynamics of the blocking.
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Chapter 3

Effects of Transient Eddies and Low

Frequency Variability on Blocking

Formation and Maintenance

3.1 Introduction

Although there is downgradient time-averaged eddy PV flux due to transient eddies, the dif-

fluent flow associated with the modon solution is not maintained against the Ekman dissipation

as indicated in the previous chapter. This could suggest the sensitivity of the eddy straining

mechanism on the prescribed basic flow. The important property of the basic flow which af-

fects this sensitivity could be its temporal behavior as well as its spatial structure. The basic

flow prescribed in the previous chapter is essentially stationary in time except for the gradual

damping due to the Ekman dissipation, where the interaction between transient eddies and basic

flow might be weak. On the other hand, low-frequency variabilities of the basic flows would

perhaps enhance the efficiency of the eddy straining effect to build up the blocking flows. To

make clear the effectiveness of the eddy straining mechanism, thus, it is necessary to reveal

the most important property of the basic flows to affect the effectiveness of the eddy straining

mechanism.

In fact, recent studies analyzing the observational data (Nakamura et al. 1997) and general

circulation model (GCM) output data (Cash and Lee 2000) suggest the important role of low
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frequency variability as well as the synoptic disturbances in the formation process of blocking.

By examining the respective contribution of the low-frequency variability and high-frequency

synoptic scale eddy to the time tendency of the geopotential height field of composite blocking

flows, Nakamura et al. (1997) indicated that the following property of blocking flows in the

Pacific and Atlantic sectors: contribution of synoptic eddies is dominant for the formation of

the blocking flows in the Pacific sector while the existence of the low-frequency variability

is crucial for the formation of the blocking in the Atlantic sector, where the eastward energy

propagation associated with low-frequency variability in the upstream region of the diffluence

due to blocking is frequently observed before the onset of blocking event.

Cash and Lee (2000) also examined each contribution of synoptic-scale transient eddies and

low-frequency variabilities to the formation and maintenance of blocking events reproduced

in an atmospheric GCM (AGCM) long-term integration. The contribution is quantitatively

evaluated in terms of the streamfunction tendency based upon the barotropic vorticity equation

applied to a single pressure level (300 hPa) of the AGCM. They found several blocking events in

which the low-frequency variabilities have a major contribution to the formation of the diffluent

flows: the downstream energy propagation associated with low frequency variability in the

upstream of the diffluent region before the onset of the blocking events emerges frequently.

They also noticed that the effect of synoptic scale transient eddies as represented by the eddy

straining mechanism might be secondary during the onset of the blocking formation while it is

crucial for the maintenance of blocking flow.

Although these two studies suggested that the importance of low frequency variation on the

blocking flows, there is an inevitable restriction in their evaluation since their analyses are basi-

cally based upon the barotropic equation. Thus, the inevitable existence of large residual term

which results from the vortex stretching term associated with the divergent winds as well as the

dissipation terms makes the exact evaluation impossible. In addition, the thermodynamic pro-

cesses such as heat flux and diabatic heating involved in the blocking events are totally neglected

in their analyses, which could also obscure the results on the importance of the low-frequency

variability during the blocking formation. Thus, in this chapter, we try to evaluate exactly each

contribution of low-frequency variability and synoptic scale eddies on the formation and main-

tenance of blocking flows occurring in a barotropic mechanistic model. In this framework, the
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blocking flows could be caused only due to barotropic mechanical process, and we could figure

out the whole process of blocking flows without any residuals.

In this chapter, we also use a β-channel barotropic model with an isolated topography, which

would force low-frequency variations (Jin and Ghil 1990), and an imposed eddy forcing, which

would generate transient eddies resembling the synoptic scale eddies. This model is basically

the same as that used by Kalnay-Rivas and Merkine (1981) who showed that transient eddies

could enhance the ridge of quasi-stationary eddies and forms diffluent flows akin to blocking.

However, the imposed eddy forcing in their study is located upstream of the isolated topog-

raphy opposed to the real atmosphere, where the transient synoptic scale eddies are generated

in high baroclinicity regions located in the downstream of major large scale topographies: the

Pacific (Atlantic) storm tracks resides the downstream of the Himalaya (the Rockies). With

this unrealistic position of eddy forcing, blocking flows occurs simultaneously in the upstream

and downstream of the isolated topography in their study. In this chapter, the eddy forcing will

be placed downstream of the isolated topography to avoid unrealistic features in their study.

In addition, we will carefully examine each contribution of low-frequency variations and eddy

straining mechanism associated with transient eddies in the formation of blocking flows, which

is not discussed in their study.

At first, the blocking criterion is established based on 10-day low-pass filtered streamfunction

field. To assess the contribution of low-frequency variations and high-frequency eddies to the

formation and maintenance of blocking flows, the high-frequency eddy field is defined as the

raw field subtracted from the low-pass filtered field, i.e., the low-frequency variations. The

separation of high-frequency eddies and low-frequency variations enables us to evaluate the

efficiency of the eddy straining mechanism for the maintenance of the blocking flows based

upon the low-pass filtered barotropic vorticity equation.

3.2 Model

The model used in this study is based on an barotropic quasi-geostrophic vorticity equation

with topography in a cyclic β-channel whose width is πLy and length is 2πLx:

∂

∂t
∇2ψ + J(ψ,∇2ψ + βy + f0

h
H

) = −λ∇2ψ + F − ν(∇2)3ψ, (3.1)
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where ψ denotes the streamfunction, h the height of the topography, H the mean depth of the

atmosphere, and λ and ν are the Ekman friction and the hyper-diffusion coefficient, ∇2 and J the

horizontal Laplacian and Jacobian operator, and F is the forcing function of transient eddies,

which will be described in detail in section 3.4.

Boundary conditions are the same as that in chapter 1: cyclic condition in the zonal direction,

ψ(x, y, t) = ψ(x + 2πLx, y, t)

at x = −Lxπ and x = Lxπ is imposed; the two prescribed rigid walls at y = −Lyπ/2 and y = Lyπ/2

set the meridional boundary condition,

∂ψ

∂x
= 0,

∫ Lxπ

−Lxπ

∂

∂t
(−∂ψ
∂y

)dx = 0,

at y = −y/2 and y/2. We also assume a constant uniform zonal wind (U), and the streamfunction

ψ is

ψ(x, y, t) = −Uy + φ(x, y, t). (3.2)

The following orthonormal functions

FAm =
√

2 sin my,

FKn
m
= 2 cos my sin nαx,

FLn
m
= 2 cos my cos nαx,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.3)

where m = 1, 2, · · · ,M, n = 1, 2, · · · ,N, and α = Ly/Lx are used for the spectral expansion of

the streamfunction φ in the channel domain as in chapter 1. The aspect ratio of this channel is

given by 2/α. By using these orthonormal functions, a set of M × (2N + 1) ordinary differential

equations for the expansion coefficients xi(t) is obtained.

An isolated topography is assumed to have a Gaussian shape in the zonal direction as in

Kalnay-Rivas and Merkine (1981):

h = h0 cos(πy/Ly) exp{−((x − x0)/Δx)2},

where, h0 is the height of the topography, Δx the zonal width of the mountain, and x0 the location

of the peak of the topography.
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Equation (3.1) is then nondimensionalized; t is nondimensionalized by 1/ f0 where f0 is

2Ω sinφ0 at the central latitude of the channel: x and y by Ly. The following parameter val-

ues are used in this chapter: the central latitude φ0 of the channel is plated at 45◦ N, and

f0 = 1.03 × 10−4s−1, β = 1.62 × 10−11m−1 s−1, the zonal length of the channel πLx is given

by that of the latitude circle at 45◦ N (28,342 km), the two walls of the channel is placed at

15◦ N and 75◦ N, Ly = 6, 679 km, and the scale height H is 8.3× 103m. The truncation wave

number M and N in (3.3) used in this chapter is M = 21 and N = 42, which provides suffi-

cient spatial resolution to resolve synoptic-scale eddies. The assumed value of Ekman friction

coefficient λ and the hyper diffusion coefficient ν correspond to the damping time scale of 10

days (λ =[s−1]) and 1/6 hours for the smallest horizontal scale component of M = 21, N = 42

(ν =[s−1]).

Time integration in this chapter is carried out by using the 4th order Runge-Kutta scheme

with the time step of 1 hour. The model data are stored every 12 hours.
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3.3 Basic flow

In order to specify the basic states in Eq. (3.1) without F̃ , we examine the bifurcation of

stationary solutions in a wide range of parameter values of the zonal wind speed U and the

topographic height h (10 m/s � U � 20 m/s, 600 m� h � 1000 m). Stationary solutions are

numerically obtained by the revised Marquadt method, which obtain local minimum point from

a specified initial guesses (Mukougawa 1988). Here, several hundreds of initial guesses are

given for several prescribed values of U and h.

In the framework of the linear theory, the wave component of (m, n) = (1, 4) in Eq. (3.2)

is expected to dominate the flow pattern in this parameter range since its resonant wind speed

UR = β/{(m/Ly)2 + (n/αLx)2} is given by 17.8 m/s. The bifurcation diagram of solutions for

h=900 m is shown in Fig. 3.1a, where the ordinate shows the amplitude of the wave component

(m, n) = (1, 4), i.e., (ψK4
1

2 + ψL4
1

2)1/2 for h = 900 m. We obtain two solution branches as in Fig.

3.1a. The upper branch denoted by squares in Fig. 3.1a comprises of stationary solutions which

may have a pitchfork bifurcation point at U=15 m/s, and becomes linearly unstable for U � 15

m/s (we do not obtain branch of stationary solution bifurcating from this bifurcation point).

The stationary solutions belonging to the lower branches denoted by circles in Fig. 3.1a also

becomes unstable at U=13 m/s, and a stable periodic solution emerges for U � 13 m/s. Thus,

this bifurcation is classified as the super-critical Hopf bifurcation. Each vertical bar in Fig.

3.1a shows the range of the amplitude variation in the periodic solution, which becomes larger

with the increase of U. Thus, for U � 16 m/s, one stable stationary solution and one periodic

solutions co-exist. The period of the limit cycles is about 16 days, and is almost independent of

U for this parameter range.

Figures 3.1b and 3.1c show the streamfunction of the unstable stationary solution and time-

averaged streamfunction of the periodic solution during one period for U = 14 m/s, respectively.

The wave component of (m, n) = (1, 4) dominates in both fields as expected by the linear theory.

The ridge just downstream of the isolated topography (αx ∼ 2/5π) in the stationary solution

(Fig. 3.1b) is enhanced compared with that in the time-averaged field of the periodic solution

(Fig. 3.1c). This is also seen in Fig. 3.1a.

These two solution branches are also obtained in a wide range of parameter value of the
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topographic height h. While Hopf bifurcation in the lower branch appears for smaller U than

13 m/s when h is larger than 900 m, it appears at larger U for smaller h. The stationary solution

in the upper branch becomes stable at larger U for larger h. Thus, the parameter range of U

where two stable solutions co-exist becomes narrow for larger h. However the linear stability of

solutions depends upon the value of h; the zonal wind speed U at the Hopf bifurcation for the

lower branch becomes small with the increase of h, while U at the pitchfork bifurcation point

in the upper branch becomes large with the increase of h.
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3.4 Effects of transient eddies

3.4.1 Dependence on the basic flow

The obtained stationary solutions and the periodic solutions in this parameter range explored

in our study do not exhibit distinct diffluent flow such as the blocking. Thus, we impose a

transient eddy forcing on the basic flow prescribed by the stationary solutions or the periodic

solutions, and examine whether a distinct diffluent flow is formed. In this section, the relation-

ship between the formation of blocking flows and the basic flows is examined.

The eddy forcing F in Eq. (3.1) is given by

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ sin{π(x − x0)
Δx

} cos{3π(x − x0 − Ut)
Δx

} sin{π(y − y0)
Δy

} for x0 < x < x1; Δx = x1 − x0;

y0 < y < y1; Δy = y1 − y0

0 elsewhere.

(3.4)

Here, the eddy forcing region denoted by x0, y0, Δx and Δy is shown by the the rectangular

in Fig. 3.2 (αx0 = −7π/12, y0 = −π/8, αΔx = π/4, Δy = π/4). The forced transient eddies

have a zonal wavelength of 4724 km, and their phase speed is given by U. The eddy forcing is

located in the trough region of the basic flow just downstream of the isolated topography. The

amplitude of the eddy forcing F̃ is varied between the nondimensionalized parameter range of

0.2 � F̃ � 0.5, where the value of 0.2 corresponds to form the vorticity which is given by the

maximum value of the periodic solution in 3 hours for h=900 m and U=14 m/s.

The time integrations are performed for h=900 m and 11 m/s � U � 17 m/s from the ini-

tial condition given by the stationary solution or the periodic solution. Distinct diffluent flow

patterns similar to the blocking frequently emerged for U � 15 m/s when the amplitude of

eddy forcing F̃ is larger than 0.45. Thus, we set F̃=0.5 in the following experiments. With

this forcing amplitude, the asymptotic behavior of this system does not depend on the initial

condition.

For example, Fig. 3.2 shows the instantaneous streamfunction field at the day 928 for h=900

m and U=14 m/s. The enhanced anticyclonic circulation is located at αx=0 (Fig. 3.2a), and

associated diffluence is formed just upstream of this anticyclone as in Fig. 3.2b where the
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streamfunction of ψ = φ − Uy is depicted.

Since the variation accompanied by the diffluent flow has a distinct low frequency compo-

nent, we apply a 10-day low-pass filter to the output data so as to extract the low-frequency

variability. Variations associated with each transient eddy are mostly removed by this filter

since the imposed eddies has a period of 3.2-5.0 days for 11 m/s � U � 17 m/s.

We also apply an empirical orthogonal function (EOF) analysis to the 10-day low-pass filtered

data in order to obtain the dominant low frequency variation and to define the “blocking event”

during which the diffluent flow pattern as in Fig. 3.2b becomes prominent. The EOF analysis

on the covariance matrix of the streamfunction is applied for the rectangular region of −π/2 <
αx < π/2 in the channel model (see Fig. 3.3).

The first mode called EOF1 for U = 14 m/s, F = 0.5 and h = 900 m accounts for 81.4% of the

total variance, and is characterized by an enhanced anticyclonic circulation located near αx=0

as shown in Fig. 3.3. The flow pattern is very similar to the “blocking” flows (Fig. 3.2a). Figure

3.4 shows the time variation of the principal component (PC) associated with EOF1 scaled by

its standard deviation (thick horizontal line). From this figure, we find that PC1 intermittently

has a large value except for long quiescent periods during which PC1 has small negative values.

Moreover, most of the excited events with large PC1 last more than 10 days.

Hence, we define the blocking event in this channel model when PC1 exceeds one standard

deviation for more than 10 days. To ensure separation of events for compositing and filtering

purposes, two blocking events occurring less than 10 days apart are treated as a single event.

For other experiments with different values of U, we also use EOF1 for U=14 m/s to define the

blocking event; “PC1” time series for these experiments is obtained by projecting streamfunc-

tion field onto EOF1 for U=14 m/s. This procedure will facilitate to examine the dependence

of the statistical property of the blocking event on the uniform zonal flow U 1 .

Table 1 show the number and total days of blocking events occurring during 2500 days for 11

m/s � U � 17m/s. The number of blocking events attains a maximum value at U =14 m/s, and

blocking events hardly occur for U � 16 m/s. This result shows that the formation of blocking

events depends crucially on the basic flow.

1The flow pattern which is very similar to EOF1 for U = 14 m/s can be seen in EOF1 in the wide range of U.

In fact, this definition is verified by comparing with the time evolution of the streamfunction field
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3.4.2 Effectiveness of the eddy straining mechanism

In the previous section, we found that persistent diffluent flows similar to the blocking are

formed for some basic flows when the transient eddies are imposed in this model. In order to

examine the effectiveness of the eddy straining mechanism for the formation and maintenance

of diffluent flows, we will analyze the model behavior for h=900 m, U=14 m/s, F̃=0.5 in detail.

The blocking events occur most frequently at U = 14 m/s in the range of 11 m/s � U � 17 m/s

(Table 1).

In the nonlinear framework, the examination on the eddy straining mechanism by comput-

ing the second-order flows due to PV flux divergence associated with high-frequency transient

eddies is not adequate since the assumption of the basic flow stationarity does not hold. On

the contrary, the basic flow evolves in time, and diffluent flow states (blocking flows) emerge

spontaneously from non-blocking states in this model. Fortunately, this evolution is mostly cap-

tured by the low-pass filtered field as shown in the previous section. Thus, we will assess the

eddy straining mechanism, by integrating the following vorticity equation, which governs the

evolution of the low-pass filtered field:

∂∇2ψ
L

∂t
+ J(ψ

L
,∇2ψ

L
+ βy + f0

h
H

) = −∇ · v′∇2ψ′
L − λ∇2ψ

L − ν(∇2)3ψ
L
. (3.5)

Here, ()
L

denotes the low-pass filtered field defined by the 10-day low-pass filter (Blackmon

et al. 1986), and ()
′
the high-pass filtered one defined as the residual, i.e. ψ = ψ

L
+ψ

′
. Equation

(3.5) could be obtained by applying the low-pass filter to Eq. (3.1) after decomposing the

streamfunction into the low-frequency part and high-frequency part. We also assume ψ′
L
= 0,

and ignore the high- and the low-frequency nonlinear interactions, such as ∇ · v′∇ · ψL
L

. We

found these terms to be unimportant compared with ∇ · v′∇ · ψ′ L retained in Eq. (3.5).

The transient eddy forcing term ∇ ·v′∇2ψ′
L

is obtained by using the data generated by a long-

term integration of the model in the previous section. Thus, we could diagnose a one-way effect

of high-frequency transient eddy on the low-frequency field by integrating Eq. (3.5) forward in

time. We initialize Eq. (3.5) with the low-pass filtered streamfunction ψ
L

at the onset of each

blocking event (day 0), 2.5 days prior to the onset (day -2.5), and 5 days prior to the onset (day

5). By comparing these results with time evolution of the low-pass filtered field in the model,

we could assess the effectiveness of the eddy straining mechanism for the maintenance of the
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blocking flow.

Figures 3.5, 3.6, and 3.7 show the composite streamfunction of the time integrated results

for individual blocking events (see Table 1). The key day for the composite is set at day 0.

Although we find a distinct confluence just downstream of the wavemaker region a diffluent

region at αx = −π/3 for the low-pass filtered streamfunction at day 0 (Fig. 3.7), the composite

of the time integration of Eq. (3.5) from day -5 and day -2.5 does not indicate such distinct

diffluence downstream of the wavemaker region at day 0 in Fig. 3.5c and Fig. 3.6b, respectively.

Thus, we find that the eddy straining mechanism is not effective to excite blocking states from

non-blocking zonal states.

In order to quantitatively evaluate the contribution of high-frequency transient eddies to the

formation and maintenance of the diffluent flow, we show the time evolution of the projection

of each composite ψ
L

onto EOF1 (Fig. 3.3) along with PC1 time series (solid line) in Fig. 3.8.

The projection for the time integrations from day -5 (broken line) and day -2.5 (dotted line)

remains almost constant before day 0 is consistent with Figs. 3.5 and 3.6. The value is also

scaled by the standard deviation of PC1. The variance of the projection among the blocking

events at day 0 denoted by the vertical lines for these two series of the experiments. Thus, we

confirm that the contribution of PV flux convergence associated with the high-frequency eddies

is not significant to form the blocking event in this model.

On the other hand, eddy straining mechanism due to high-frequency eddies does work to

maintain the diffluent flows after the onset of the blocking event. For example, the composite

projection of the time integrations from day 0 (dash-dotted line) remains larger than unity (the

horizontal line) as in Fig. 3.8. Moreover, the projection for the time integrations from day -5

(broken lines) and day -2.5 (dotted line) increases near day 0, and keeps a large value around the

threshold for the definition of the blocking after the onset of the blocking event. Note that we use

the same value of the transient eddy forcing ∇ · v′∇2ψ
L

for these three kinds of integration from

diffluent initial conditions. Thus, we find that PV flux convergence due to transient eddies has

an important contribution to maintain the blocking state after the establishment of the diffluent

flow.
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3.4.3 Formation of the blocking flow

As shown in the previous subsection, the eddy straining mechanism due to transient eddies

does not play an important role during the developing stage of the distinct diffluent flows similar

to the blocking, while this mechanism is relevant for the maintenance of the diffluent flow

against dissipation. In this subsection, we will examine the formation process of the diffluent

flows from the zonal, non-blocking state in detail. In particular, we pay our attention to the

interaction between low- and high-frequency transient motions.

First of all, we show the time evolution of the vorticity field during a non-blocking state for

day 845 - day 849, and the onset period of a blocking event for day 922.5 - day 926.5 for U=14

m/s in Fig. 3.9a and Fig. 3.9b, respectively, to obtain an intuitive understanding for the blocking

formation in this model. The low-pass filtered streamfunction fields for day 922.5 - day 926.5

are also shown in Fig. 3.10. During the non-blocking state (Fig. 3.9a), vortices associated

with high-frequency transients are advected eastward along the center of the channel (y=0) by

almost zonal “basic flow”. On the other hand, high-frequency eddies are gradually meandering

in the meridional direction before the onset (day 922.5 in Fig. 3.9b), and anticyclonic vortices

eventually move far northward, and stay near the northern wall around αx = π/8 just before the

onset (day 924.5-day 926.5 in Fig. 3.9b). Then, a dominant anticyclonic circulation is abruptly

built up, and the blocking state is established (day 926.5 in Fig. 3.10).

The contributions of low- and high-frequency eddies to the formation of the blocking event

could be examined quantitatively by using the following streamfunction tendency equation de-

composed into the low-pass filtered field ψ
L

and the residual ψ
′
= ψ − ψL

(high-frequency

transients) as in Cash and Lee (2000):

∂ψ

∂t
=

4∑
i=1

ξi − λψ − ν(∇2)ψ (3.6)

where

ξ1 = ∇−2J(ψ
L
,∇2ψ

L
+ βy +

f0h
H

)

ξ2 = ∇−2J(ψ
L
,∇2ψ

′
)

ξ3 = ∇−2J(ψ
′
,∇2ψ

L
+ βy +

f0h
H

)

ξ4 = ∇−2J(ψ
′
,∇2ψ

′
),

(3.7)
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which is obtained by applying the inverse Laplacian to Eq. (3.5), and low-frequency field is

obtained by using the same low-pass filter as in the previous subsection.

The physical interpretations of the ξi terms are as follows. The advection of the low-frequency

and the planetary vorticity by the low-frequency wind is ξ1. The advection of the high-frequency

vorticity by the low frequency wind is ξ2, while ξ3 is the advection of the low-frequency and

planetary vorticity by the high-frequency wind. The vorticity flux divergence due to high-

frequency eddies is represented by ξ4.

The contribution of each term ξi for the blocking event (day 926.5-day 945) of Fig. 3.9b is

shown in Fig. 3.11, which indicates the cumulative increment of the streamfunction due to each

term ξi from day 919.5 to day 929.5 (the onset of the blocking event is day 926.5), i.e.,∫ day 929.5

day 919.5
ξidt (3.8)

along with the difference field of the streamfunction between day 919.5 and day 929.5 (ψday929.5−
ψday919.5). Day 919.5 (929.5) corresponds to 7 days before (3 days after) the onset of the block-

ing (day 0). In the difference field of the streamfunction (Fig. 3.11a), a dominant anticyclonic

circulation is seen in the northern half of the channel around the region of −π/8 < α < 0, con-

sistent with the buildup of the blocking high in this region. By comparing other four figures in

Fig. 3.11 with Fig. 3.11a, we find that only Fig. 3.11c indicating the contribution of the term ξ2

(advection of high-frequency vorticity by low-frequency wind) shows the anticyclonic circula-

tion around the blocking region as in Fig. 3.11a, while other terms do not have any contribution

to the onset of the blocking formation. Thus, these figures suggest the important contribution of

the term ξ2 in the blocking formation. We also find that the ξ1 term (Fig. 3.11b) corresponding

to the low-frequency contribution creates a confluent flow upstream of the blocking region. This

flow pattern in the upstream is also seen in the difference field of Fig. 3.11a.

In order to further evaluate the contribution of each term ξi in Eq. (3.6) to the blocking

formation, we calculate the projection of the cumulative contribution of each term
∫ day3

day−7
ξidt +

ψday−7 onto EOF1 of Fig. 3.3 for 11 blocking events (see Table 1). Figure 3.12 shows the

composite value of the projection for these events along with that of PC1 time series (solid

line)．From Fig. 3.11, we find that the dominant term is ξ2 (Fig. 3.11c) and ξ3 (Fig. 3.11d), i.e.,

the interaction between low- and high-frequency field, and they have almost the same magnitude

with the opposite sign before the onset of the blocking event. In the composite value, the sum
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of these terms (dotted line) abruptly increase after day -1. This abrupt increase is also seen

for PC1 time series. Thus, the blocking in this model is formed rapidly in time with the time-

scale of high-frequency eddies due to the interaction terms between low- and high-frequency

eddies. In particular, the contribution of the advection of the high-frequency vorticity by the

low-frequency wind ξ2 is important for the formation since the term ξ2 has the same sign as

PC1. We also denote that the contirbution of the high-frequency eddies (ξ4; dash-dotted line)

becomes gradually important after the establishment of the blocking, which has already been

shown in the previous subsection.

Figure 3.13 also shows that the contibution of low-frequency contribution ξ1 gradually in-

creases before the onset of the blocking. Moreover, Fig. 3.12 also indicates significant contri-

bution of the low-frequency variability to the formation of the confluent flow upstream of the

blocking region during the blocking formation. Thus, these facts suggest that the onset of the

blocking formation is triggerd by the low-frequency variation in this model. In order to examine

this possiblity, we show the time evolution of the composited streamfunction fields associated

with the low-frequency variation ψ
L

for 11 blocking events from day -5 to day 0 in Fig. 3.13.

In this onset period, the vortex dipole (cyclone/anticyclone in north/south) at αx = −2π/5 up-

stream of the blocking region is gradually enhanced. This is caused maily by the term ξ1 in Eq.

(3.9) as shown in Fig. 3.11b. In the just downstream region of this confluence, another vortex

pair (anticyclone/cyclone in north/south) corresponding to the blocking is gradually amplified

with a slightly downstream shift of the northern anticyclone. Thus, these figures suggest that

the buildup of the confluence upstream of the blocking region in the low-frequency variability

ψ
L

seems to be a precursor of the blocking formation.

In order to examine this hypothesis on the precursor of the blocking, we calculate the inner

product of the streamfunction field during the non-blocking states and that of the composited

low-frequency variation at each day in Fig. 3.13 for the rectangular region of −3π/4 < αx <

0 and −π/2 < y < π/2. The non-blocking state is defined as periods except for the time

intervel from day -10 to the end of each blocking event. For each day in Fig. 3.13, we also

compute the innner product of the streamfunction at the corresponding day in each blocking

event and that of the composited value (closed ciecles in Fig. 3.14). If the inner products

at a day for each blocking event have significantly different values from those values during
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the non-blocking states, we could think that the composited low-frequency field at that day is

inherent to the blocking formation. Moreover, the low-frequency field of the first day after

which this separation between blocking and non-blocking states is distinct is the precursor for

the blocking formation. In Fig. 3.14, the variation of the inner product during non-blocking

states is shown by the vertical lines which cover the two standard deviation from the mean value.

From this figure, we find that the separation between blocking and non-blocking states becomes

evident after day -4. Thus, this result also implies that the enhancement of the dipole structure

accompanying the confluent region upstream of the blocking in low-frequency variation might

be a precursor for the blocking formation.
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3.5 Concluding Remarks

The formation and the maintenance mechanisms of blocking flows were investigated using

a quasi-geostrophic barotropic β-channel model with an isolated topography. A periodic wave

forcing was included just downstream of the topography in order to represent the transient

synoptic eddies in this barotropic model. In particular, we paid attention to clarify the role of

eddy straining effect due to the deformation of transient eddies and that of the low-frequency

variation in the formation and the maintenance of the blocking flow.

We obtained stationary and periodic solutions in a wide parameter range of the zonally uni-

form flow U (10 m/s� U � 20 m/s) and the topographic height h (600 m � h � 1000 m)

to specify the basic flow in this model. These solutions, however, do not accompany distinct

diffluent flow. However, when the wave forcing is imposed on this basic flow, we find that

distinct diffluence fields similar to the blocking frequently occur for some parameter values.

Since the intrinsic lifetime of this distinct diffluent event is much longer than the period of the

imposed transient eddies (3.9 days), we apply a 10-day low-pass filter (Blackmon et al. 1986)

to the model output to extract the low-frequency variability including the blocking event in this

model. The EOF analysis to the 10-day low-pass filtered streamfunction reveals that the most

dominant variability for U = 14 m/s and h = 900 is closely related to the occurrence of the

distinct diffluent flow. Thus, we define the blocking event in this model by using the principal

component (PC1) associated with EOF1 for U = 14 m/s and h = 900 m. By using this definition

we find that the total number and the total duration of blocking events for the parameter range

11 m/s� U � 17 m/s show a clear dependence on the zonally uniform flow: there is no blocking

event for U >16 m/s. This might be connected with the resonance of the zonal wavenumber 4

component in this parameter range.

The effectiveness of the eddy straining mechanism for the formation of the blocking event in

this model is quantitatively evaluated by integrating the low-pass filtered vorticity equation, and

we find that after the onset of the blocking event the diffluence flow associated with the blocking

is maintained by the low-pass filtered vorticity flux divergence associated with the imposed

high-frequency eddies. On the other hand, before the onset of the blocking, the contribution

of low-pass filtered vorticity flux divergence is too small to explain the enhancement of the
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blocking dipole. Thus, the eddy straining mechanism is not effective to establish the diffluence

associated with the blocking state.

The importance of the low-frequency variability in the formation of the blocking is confirmed

by decomposing the streamfunction tendency equation into low-frequency and high-frequency

contributions, and the interaction between low- and high-frequency eddies. The blocking event

in this model is built up on a synoptic time scale, and this abrupt establishment is caused by the

advection of the high-frequency vorticity due to low-frequency winds. Moreover, the blocking

formation seems to be caused by an irreversible mixing of PV due to the wave breaking as

mentioned by Nakamura et al. (1997).

The low-frequency variations might be important to trigger the blocking formation. In par-

ticular, we find that the enhancement of the confluent flow associated with the low-frequency

variation upstream of the blocking region could be a precursor of the blocking onset since the

confluence is not sustained for the non-blocking state. However, the successive downstream de-

velopment from the confluence connected with the blocking formation is not simply explained

by the energy propagation of low-frequency eddies, since the development before the onset is

mainly due to the interaction between high- and low-frequency eddies.

In a similar barotropic model experiment, Shutts (1983) indicated the importance of the eddy

straining mechanism due to transient eddies in the formation of the diffluent flows as well as

their maintenance. However, our result on the blocking formation is apparently in contradiction

to Shutts (1983), in which blocking flows develop spontaneously only when the zonal flow

satisfies the resonance condition for Rossby waves with dipole meridional structure. Thus,

we think that the eddy straining mechanism becomes effective for the blocking formation only

under these restricted conditions, and is not so important for other more general conditions.

The formation mechanism of the blocking event in our study is the same as that of the block-

ing in the Atlantic sector in Nakamura et al. (1997) and the upstream blocking case in Cash

and Lee (2000). These studies denote the importance of the interaction between low- and high-

frequency eddies in the formation by applying a barotropic equation to the development of the

observational data or AGCM output data at one pressure level. However, there were large resid-

ual terms in their vorticity budgets, which obscure the obtained conclusion. Ignored processes

such as the thermodynamics in these studies might play role in the blocking formation. More-
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over, the “basic flow” has to be maintained by artificial forcings in their barotropic model, which

also critical to interpret the result. On the other hand, our analysis avoid these deficiencies and

is able to clearly show each contribution of the high- and low-frequency eddies in the formation

and maintenance of the blocking flow.

For further studies, it is necessary to perform the similar experiments in a baroclinic model,

in which the artificial transient eddy forcing is not necessary, and the baroclinic waves spon-

taneously develop. The dependence of the effectiveness of the eddy straining mechanism on

the horizontal structure of the imposed eddies and the basic flows must be reexamined in the

baroclinic model.
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Chapter 4

General Conclusion

We made a series of numerical experiments by using a barotropic quasi-geostrophic β-

channel model to reexamine the efficiency of the eddy straining mechanism proposed by Shutts

(1983) and Haines and Marshall (1987) (hereafter referred to as HM) on the formation and the

maintenance of blocking flows. In this mechanism, synoptic-scale transient eddies propagating

from the upstream region of the diffluence would tend to reinforce the diffluence of the block-

ing flow due to the potential vorticity (PV) flux divergence associated with the deformed eddies

by the diffluence. However, the sensitivity of the effectiveness of this mechanism on the ba-

sic diffluent flows and the property of synoptic-scale transient eddies have not been elucidated.

The important role of low frequency variability on the formation of blocking events denoted by

recent observational studies (e.g., Nakamura et al. 1997) was also examined in detail in this

thesis by using the same model with an isolated topography which could force low-frequency

variations in barotropic models (Jin and Ghil 1990).

In the first part of this thesis, the effectiveness of eddy straining mechanism was carefully

examined by using the same model as in HM except that the channel width was enlarged twice

to avoid the influence of channel walls to fluid motions. When we assume a vorticity forcing

associated with the analytical modon solution with Ekman friction in this model, two station-

ary solutions accompanying isolated structures in the uniform westerlies are obtained: one is

referred to as “blocking solution” closely resembling the modon solution; the other is referred

to as ”zonal flow solution” characterized by dominant zonal flows. In order to examine the

dependence of eddy straining mechanism on the basic flows, we adopted each stationary solu-

43



tion as a basic flow, and imposed transient eddies, which mimic the synoptic-scale waves, by a

wavemaker forcing located further upstream of the diffluence associated with basic flows. The

amplitude of transient eddies is also assumed to be small enough so that the interaction with

the basic flow could be described by a quasi-linear framework as in HM. The effectiveness of

the eddy straining mechanism is assessed by the resemblance between the basic flow and the

second-order flow induced by the time-averaged eddy PV flux divergence as in HM.

When the basic flow is prescribed by linearly stable blocking solutions, second-order flows

induced by eddies have quadruple structures, which tend to shift the blocking dipole down-

stream, instead of the dipole structure enforcing the blocking as shown in HM. However, the

time-averaged eddy PV flux divergence has almost the same pattern as in HM: north/south, di-

vergence/convergence dipole upstream of the diffluence of the basic flow. On the other hand,

second-order flows for the linearly stable zonal flow solutions have a tendency to enforce the

weak diffluence associated with the basic flow. The enhancement is not due to the resonant

property of the basic flow but depends on the property of imposed eddies. The second-order

induced flow for the blocking solution is drastically deformed by a negligible distortion of the

eddy PV flux divergence field due to a small change in the property of imposed eddies, such as

their horizontal scale and the meridional position of the trains of eddies relative to the diffluent

region.

These results obtained in the above quasi-linear framework were also confirmed in a nonlin-

ear framework by examining the nonlinear evolution of the blocking solution without vorticity

forcing associated with the analytical modon: the amplitude of the blocking high diminish faster

when the transient eddy forcing are included in the model. Thus, the eddy straining mechanism

is not so effective to maintain the diffluence of blocking flows against surface friction, and its

effectiveness is also very sensitive to the properties of migrating eddies as well as the assumed

basic flow.

In the second part of this thesis, the mechanism related to the formation and the maintenance

of blocking flows when there is low-frequency variability as in the real atmosphere was investi-

gated. The model used in this part was almost the same as in the first part except for the inclu-

sion of an isolated topography. A wavemaker forcing was also imposed at the trough region just

downstream of the topography. The surface topography forces planetary-scale quasi-stationary
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waves in this model.

We obtained stationary and periodic solutions in a wide parameter range of the uniform zonal

flow speed U (10 m/s� U � 20 m/s) and the topographic height h (600 m � h � 1000 m) to

specify the basic flow in this model. Although these solutions do not have distinct diffluent

flows, we could find frequently prominent diffluence fields similar to the blocking for some

parameter values when the wave forcing is imposed on these basic flows. Since the intrinsic

lifetime of this distinct diffluent event is much longer than the period of the imposed transient

eddies (3.9 days), we apply a 10-day low-pass filter (Blackmon et al. 1986) to the model

output to extract the low-frequency variability including blocking events in this model. The

EOF analysis to the 10-day low-pass filtered streamfunction reveals that the most dominant

variability for U = 14 m/s and h = 900 m is closely related to the occurrence of the distinct

diffluent flow. Thus, we define the blocking event in this model when the projection of the

streamfunction filed to EOF1 for U = 14 m/s and h = 900 m becomes greater than a prescribed

threshold value. By using this definition we find that the total number and the total duration

of blocking events for the parameter range 11 m/s� U � 17 m/s with h = 900 m show a clear

dependence on the uniform zonal wind speed U: there is no blocking event for U >16 m/s.

The effectiveness of eddy straining mechanism for the formation of the blocking event in

this model was quantitatively evaluated by integrating the low-pass filtered vorticity equation.

We found that the low-pass filtered transient eddy vorticity flux divergence corresponding to

the eddy straining mechanism is too small to set up the blocking dipole during the onset of the

blocking event. Thus, the eddy straining mechanism is not effective to establish the diffluence

associated with the blocking state. On the other hand, eddy straining mechanism plays a major

role to maintain the blocking event in the mature stage of the blocking event.

With the analysis on the streamfunction tendency during the onset of the blocking event by

decomposing it into low-frequency contribution, high-frequency contribution, and the interac-

tion between low- and high-frequency eddies, we found that low-frequency variability plays a

key role in the formation of the blocking. Moreover, the blocking event in this model is built up

in a synoptic time scale, and this abrupt establishment is caused by the advection of the vorticity

field associated with high-frequency variability due to low-frequency winds. The low-frequency

variation might trigger the blocking formation. The enhancement of the confluent flow associ-
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ated with the low-frequency variation upstream of the blocking region could be a precursor of

the blocking onset since the confluence is not sustained for the non-blocking state. However,

the successive downstream development from the confluence connected with the blocking for-

mation is not simply explained by the energy propagation of low-frequency eddies since the

development before the onset is mainly due to the interaction between high- and low-frequency

eddies.

From this study, we could suggest that the discussion on the eddy straining mechanism by

adopting a stationary solution such as modon solution as the basic state may be inadequate.

As we noted, the slowly varying component during the blocking event may be essential to

understand the whole life cycle of the blocking event. Thus, we should pay our attention to the

transience of the blocking event.

The efficiency on the eddy straining mechanism for the maintenance of the blocking flow in

the real atmosphere has been insisted in observational studies (e.g., Illari 1984; Mullen 1987)

only by indicating the downgradient PV flux divergence structure upstream of the blocking flow

(Illari 1984), or the corresponding geopotential tendency field obtained with an inverse Lapla-

cian operator(Mullen 1987) based upon the result of Shutts(1983). However, the high sensitivity

of the second-order flow to a fine structure in the eddy PV flux divergence field in this study

suggests that these evidences in the PV fields does not necessarily mean the enforcement of the

blocking flow by the synoptic eddies. We should compute the second-order induced flow due to

the PV flux divergence based on a zonally varying basic flow and discuss the similarity between

the induced flow and the basic flow to assess the efficiency of the eddy straining mechanism.

In this study, transient eddies are forced by a imposed wavemaker forcing since transient

eddies do not spontaneously develop in this barotropic model. Thus, we should examine the

efficiency of the eddy straining mechanism in a baroclinic model where transient eddies emerge

through the baroclinc instability. Moreover, since the activity and the horizontal scale of eddies

are determined in connection with the structure of the basic flow upstream of the blocking,

the enhancement of the jetstream, which might be a precursor of the blocking indicated in the

second part of this thesis, could activate the transient eddy in baroclinic models. This may in

turn enhance the possibility to set up the blocking onset through the interaction between low-

and high-frequency variability as indicated in this thesis.
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Figure 2,12i Same asin Fig。  1.8 exceptthatthe wavemakeris shifted to the south by 15%ofthe modon

radius rO.



Figure 2.13
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Figure 2.13i Same asin Fig.1.8 exceptthatthe zonal wavelengdl ofthe imposed eddiesis 6,300km,and

the eddy streamfunction at day 29 1s drawn in(a)。
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Figure 2.14
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Figure 2.14: Same as in Fig. 1.8 except that the wavelengdl of the eddies is 5,600km,and the eddy

streamfunction at day 28 is dra、vn in(o.

divergence
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Figure 2.15:Ensemble mean ofPV ield(a)With and(b)WithOutthe eddy forcing ofthe zonal wavelength

of7000 km (shaded rectangular region). The upper panel,the nllddle panel and the lower panel denote

dayO,day 2.5 and day 5,respectively. Contour intervals are 5.O and negative values are contoured by

dashed lines.Zero contollrs are omitted.
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Figure 2.16
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Figure 2.16: Tilne evolutiOn ofthc maximum value ofthe PV with the transient eddy forcing of zonal

wavelengdl of 7000 kn■ (astensks),6,300km (Open circles),5,600kコ n(open Squares)and Without eddy

forcing(c10Sed circles).
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Figure 2.17
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Figure 2.17:Streamfuncはon tendency一▽
~2ブ
(レ1,?1)Obtained from the eddy PV nux divergence of Fig.

1.13b for(a)and Of Fig.1`14b for(b),reSpectively.Contollr intettals are l.0×10~8 and negative values

are contoured by dashed lines.Zero contours are oIIlltted.



Figure 3,1
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Figure 3.■(a)Bifurcation diagram ofthe steady solutions forん=900m.The abscissa is zOnally unif01111

wind」 and tte ordinate is the amplimde Of the wave component l″,れ)=(1,4)of steady sOlutons.

Ciosed squares and closed circles are linearly stable stationary solutions,open squares are linearly unsta‐

ble stationary solutions.The closed circles with vertical bars denote the stable pe五odic solutions whose

a m p l i t u d e  a r e  t h e  r a n g e  o f  t h e  v e r t i c a l  b a r s , T h e  s t r e a m t t n c t i o n  i e l d s  f o r  y = 1 4 m / s ( i n d i C a t e d  a s  l a r g e

open circles in(a))Of the unstable stadonary solution for(b)and time― averaged neld of the pedodic

solution for(c).
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Figure 3.2
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Figure,3.2:Instantaneous streamfunction neld of(a)φ and(b)レ=φ―こインat day 928 for乃=900 m and

y=14m/so COntOurintervals are O.01 and negative values are contoured by dashed lines.



Figure 3.3
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Figure 3.3:Pattem of EOFl for t/=14m内 ,F〓0.5 andん=900m.COntollr intettals are O.ol.



Figure 3.4
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Figure 3.5
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Figure 3.7:Low― pass iltered streamfunction neld of day O(onSet Ofthe blocking event).
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Figure 3.8
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Figu砲3.8:■me ev01uton ofthe pro」ecton Of COmposie〆ontO EOFl.Sottd hne denotes he dme
evolution ofPCl.The prttectiOn fOr the tme integration from daン‐5,-2.5,O are depicted by broken line,
dotted line and dotted broken line,respectively.The variance ofthe prttectiOn at day O in each b10cking

event are shown by verticalllnes.
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Figure 3,9
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Figure 3.9:Time evolution ofthe relative vorticity fleld▽2ッdu五ng(a)nOn―blocking state ofday 845-849,

(b)befOre the blocking onset ofday 922,5‐926.5`Only the halfofregion ofthe model,一π/2くαメ<π/2

is shown.Contour intettals are O。25 and negative values are contoured by dashed lines and shaded.Zero

contours are olrlltted.
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Figure 3.10
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Figure 3.10:Time evoludon Of dle low―pass nltered strealnfunction neld万
と
before the blocking onset of

day 922.5‐926.5(coreSponding to Figure 3.9b).Only the half ofregion ofthe model,一π/2くαガ<7r/2
ls shown. Contour intettals are O.005 and negative values are contoured by dashed lines and shaded.

Zero contollrs are oml■ed.
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Figure 3.11
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Figure 3.11:DifFerence ofthe streamfunction neld evaluated by Eq.(3.8)。The difFerence streamfunction

ieldツday929 5~内αノ919 5 iS(a),and that due toど1,f2,島 and tt are ShOWn in(b),(C),(d)and(e),

respectively,Only tte half of region of the model,一π/2<αメく7r/2 is shown.Contour intervals are

O.02 and negadve values are contoured by dashed ttnes and shaded.Zero contours are ornitted.
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Figure 3.12
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Figure 3.12:The time evoluton ofprdectiOn Of ll blocking composite of the cumulative contribudon

of each tellll of Eq.(3.7)onto EOFl.The pxガectiOn Of conttbudon ofξl,f2+どちandガ4 are depicted
by broken line,dotted line and dottedhbroken line and that ofPCl is depicted by solld line.
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Figure 3,13
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Figure 3.13:Time evolution of the composite low―pass nitered streamfunctionレ
と
frOm day-5 to day O.

Contollr intervals are O.Oo5 and negative values are contoured by dashed lines.
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Figure 3.14

Figure 3.14: Inner―product of the lo、v―pass nitered streamfunction in each blocking event frOm day-7

to day O and that ofthe composite value(ciOSed circle).The inner product of that du五ng non‐blocking

states are denoted by aste五sks and its two standard deviation froln the mean value is indicated by the

vertical line.
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Table l

12   13   14   15

10   12   11   11

218  328  355  117

Table l:Total number and days ofblocking events dudng 2500 days for ll m/s≦υ≦17m/s.
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