On the Role of Synoptic Disturbances
In For mation and Maintenance

of

Blocking Flows

ARAI Miki

Division of Ocean and Atmospheric Science,

Graduate school of Environmental Earth Science,

Hokkaido University

August, 2002



Abstract

The role of synoptic disturbances in the formation and maintenance of the blocking flowsis
investigated using a barotropic quasi-geostrophic B-channel model.

In the first part of this dissertation, effectiveness of the eddy straining mechanism proposed
by Shutts (1983) is examined in a quasi-linear framework. The model used here possesses two
stationary solutions when the vorticity forcing associated with the analytical modon solution is
assumed: one solution referred to as “blocking solution” closely resembles the modon solution
while another referred to as “zonal flow solution” is characterized by dominant zonal flows.
The infinitessmal transient eddies which mimic synoptic disturbances are generated by a wave-
maker forcing located far upstream of the diffluence associated with the basic flow prescribed
by stable stationary solutions. The effectiveness of the eddy straining mechanism is examined
by comparing the basic flow with the second-order flow induced by the time-averaged potential
vorticity (PV) divergence due to imposed eddies.

Although the distribution of the time-averaged PV divergence for the blocking solution is
PV north/south, divergence/convergence dipole upstream of the diffluence of the basic flow as
suggested by Shutts (1983), the computed second-order flow has a quadruple structure, which
tendsto shift the blocking dipol e downstream but not enforcing the blocking. On the other hand,
the second-order flow tends to maintain diffluence associated with the zonal solution. Thus, the
effectiveness of eddy straining mechanism depends on the basic flow.

The second-order flow for the blocking solution isalso drastically deformed by asmall distor-
tion of the PV divergence field due to a small change of the horizontal scale and the meridional
position of the imposed eddies relative to the diffluent region. Thus, it is suggested that the
effectiveness of eddy straining mechanism also depends on the property of synoptic eddies.

Further verification of the above results is made by examining nonlinear evolutions of the
modon solution due to imposed transient eddies. We find again that the eddy straining mecha-
nismis not also effective to maintain the diffluence associated with the modon solution against
the Ekman friction.

In the second part, we examine the formation and the mai ntenance mechanism of the blocking
flows when there is low-frequency variations which are considered to be an important agent to

the blocking formation in recent studies (Nakamura et al. 1997, Cash and Lee 2000). For



this aim, we use the 8-channel barotropic model with an isolated topography. This model has
stationary solutions and periodic solutions with dominant zonal wavenumber 4 components for
h=900 m in the range of 10 m/s £ U < 20m/s, where U is the uniform zonal wind speed.
Severa time integrations are performed with imposed transient eddy forcing as in the second
part for basic flows given by these solutions. In the time integration for U < 14 ny/s, distinct
diffluent flows similar to the blocking frequently appears and persists more than 10 days. We
find that the formation of the blocking event in this model crucialy depends on the wind speed
U, i.e, the basic flow.

Examination of the tendency equation of the streamfunction decomposed into high- and
low-frequency fields by using a 10-day low-pass filter, we find that the advection of the high-
frequency vorticity by the low-frequency wind is the most important for the formation of the
blocking flow. On the other hand, the development of the low-frequency field reveals that the
eddy straining mechanism due to transient eddiesis not essential for the formation of the block-
ing, but becomes important for the maintenance of the blocking after the onset of the blocking
event. The important role of the low-frequency variability to trigger the onset of the blocking is
also suggested. Thus, this study indicated that the effectiveness of the eddy straining mechanism

crucially depends on the basic flow.
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Chapter 1

General I ntroduction

Atmospheric blocking is one of the most prominent phenomena in large-scale atmospheric
motions in the extratropical troposphere. The typical flow pattern of blocking is characterized
by a dipole pressure system with an anticyclone centered to the north of a low pressure area,
which splitsthe normal westerly jetstream into two distinct, widely separated flows (Rex 1950a,
1950b). This blocking high also has a quasi-stationary feature and tends to persist beyond
the periods associated with synoptic-scale variability. 1t "blocks' the eastward propagation of
weather disturbances and deflects them from the usual storm tracks. This structure appears
repeatedly at fixed geographical locations, oft the western margins of the continents (e.g. Tibaldi
and Molteni 1990), which coincide with the exit regions of the major storm tracksin the northern
hemisphere. Moreover, since the occurrence of the blocking episode is intimately connected
with the unusual weather, a better understanding of blocking has been a central objective of
the meteorologists from the age of synoptic meteorology. Recently, the longer term variability
of the occurrence frequency of the blocking events has been also discussed in relation to the
climate change (Palmer 1999).

Although there are many theoretical and observational studies on atmospheric blocking, the
consistent perspective on the dynamics of the blocking has not been established. In particular,
the dynamical mechanism related with the formation, the maintenance, and the decay process of
blocking events has not been fully resolved. However, the transient synoptic-scal e disturbances
have been considered to be one of the most important elements to maintain the blocking flow

against surface friction since the work of Green (1977). He suggested that the European block-



ing anticyclone of July 1976 might be maintained by the meridional momentum flux associated
with the synoptic-scal e disturbances deformed by the diffluent field due to blocking. This*“eddy
straining mechanism” was further advanced by Shutts (1983). By using an equivalent barotropic
guasi-geostrophic g-channel model, he showed in the framework of the quasi-linear theory that
the imposed infinitesimal transient eddies which mimic the synoptic-scal e disturbances are de-
formed by the assumed diffluent basic flow, and the induced flow by the potential vorticity flux
divergence due to deformed eddies tends to enforce the original diffiuent flow.

In the same line of approach, Haines and Marshall (1987) also examined the eddy straining
mechanism by adopting the modon solution as a basic flow. The modon is a steady solution of
the inviscid barotropic vorticity equation, and is used as a blocking prototype model in severa
theoretical studieson the blocking flow dueto itssimilarity in the flow pattern (e.g. McWilliams
1980; Haines and Marshall 1987; Anderson 1995). Haines and Marshall (1987) also insisted
the efficiency of the eddy straining mechanism for the maintenance of the diffluent flow due
to the modon solution. However, there are severa problems in their model experiments as
revealed in this thesis, we think that the efficiency of the eddy straining mechanism has not
been confirmed. In particular, the dependence of the efficiency of the eddy straining mechanism
on the basic flow should be clarified. Furthermore, we should quantitatively evaluate the eddy
straining mechanism in nonlinear framework to examine whether the eddy straining mechanism
could sustain diffluent flows against surface friction.

As for the formation mechanism of the blocking flows, Shutts(1983) also insisted the im-
portance of the eddy straining mechanism by illustrating the build up of diffluent flows from
zonal flows by imposing transient eddies for some parameter ranges. Recently, Nakamura et
a. (1997) indicated by careful analysis on the formation process of the blocking eventsin the
north Pacific that low-frequency variability are another important factor for the the formation
of blocking. The important role of low-frequency variability in the formation of the blocking
was also reported Cash and Lee (2000) by analyzing output data of ageneral circulation model.
However, the precise dynamical role of low-frequency variability could not be revealed in these
observational studies since many other processes are involved in the blocking formation of the
real atmosphere. Thus, we need more elaborate model experimentsto examine the role of low-

frequency variability. In these experiments, the relevance of the eddy straining mechanism in



the presence of low-frequency variability to the formation and the maintenance of blocking
flows could be also reveal ed.

In chapter 2 in this thesis, we will examine the efficiency of the eddy straining mechanism
in the quasi-linear framework as in the previous studies by adopting the modon solution as
the basic flow. In this chapter, a quasi-geostrophic g channel model which is the same asin
Haines and Marshall (1987) except for the meridional model width and horizontal resolution.
Here, we use awider channel model with afiner horizontal resolution to avoid distortion of the
modon solution. In particular, we discuss the dependence of the efficiency of the eddy straining
mechanism on the properties of the imposed transient eddies by showing a high sensitivity of
second-order induced flows due to the transient eddy potential vorticity flux divergence. Fur-
thermore, by conducting nonlinear experiments, we quantitatively evaluate the eddy straining
mechanism for the maintenance of diffluent flows against surface friction.

The role of low-frequency variability for the formation and the maintenance of blocking
flows will be investigated in chapter 3 by using barotropic g-channel model including an iso-
lated topography with the aid of the bifurcation theory. The interaction between low-frequency
variability and the imposed transient eddies will be shown to be essential for the formation
of blocking events in this model. However, the eddy straining mechanism is irrelevant to this
blocking formation whileit plays a decisiverole for the maintenance of the blocking flows after
pronounced blocking patterns are established.

The summary of this thesis will be given in chapter 4 with some implication the observa-
tional analysis on the blocking flows. These observational studies (e.g. Illari 1984, Mullen
1986) documented the relevance of the eddy straining mechanism for the maintenance of the
blocking flows by only examining the vorticity flux divergence field due to synoptic-scale ed-
dies. However, since the second-order induced flows due to this field have a high sensitivity
to the assumed basic flows as shown in this study, we cannot diagnose the relevance of eddy

straining mechanism only by the vorticity flux divergence field.



Chapter 2

On the Effectiveness of the Eddy Straining
M echanism for the M aintenance of

Blocking Flows

2.1 Introduction

The blocking eventsin the extratropical troposphere are characterized by awell known vortex
pair with the anticyclone to the north and the cyclone to the south of the ambient jetstreams.
However, the most important feature of the blocking in the context of the dynamic meteorology
isitsown unusual persistence beyond the typical time scale of synoptic eddiesand of the Ekman
surface friction (Hoskins et al. 1983).

One promising hypothesis regarding the maintenance of blocking against dissipation is the
“eddy straining mechanism” proposed by Shutts (1983). The mutual interaction between syn-
optic transient eddies and stationary blocking flows is the heart of this mechanism; when the
migrating synoptic eddies advected by the zonal flow approach the diffluent straining field up-
stream of the blocking dipole, the eddies undergo an east/west compression and meridional
extension, and are subsequently split meridionally. Associated with this strong deformation, a
region of large eddy enstrophy is formed just upstream of the blocking dipole. By taking the
balance in the time-averaged eddy enstrophy budgets into account, the enhanced dissipation of
the eddy enstrophy has to be canceled by downgradient (i.e., southward) eddy vorticity flux
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[see Eq.(1.2) in Shutts (1983)]. This vorticity flux will in turn form vorticity divergence (con-
vergence) to the north (south) of the axis of the ambient jetstreams. Since this dipole pattern
of eddy forcing has the same polarity as the blocking vortex pair, we could anticipate that mi-
grating synoptic eddies maintain blocking flows in a time-averaged sense against the surface
friction.

By using an equivadent barotropic 8—channel model, Shutts (1983) also exemplified the eddy
straining mechanism by denoting similarity between the time-mean second-order circulation
induced by transient eddies and the assumed simple diffluent basic flow prescribed by a sta-
tionary Rossby wave in the framework of a quasi-linear theory. Infinitesimal transient eddies
which mimic synoptic-scale waves were generated by a simple wavemaker forcing located far
upstream of the diffluent region.

Haines and Marshall (1987, hereafter referred to as HM) conducted numerical experiments
to examine the eddy straining mechanism in aimost the same framework as in Shutts (1983),
but they adopted an isolated modon solution in a uniform westerly flow as the basic state.
The modon solution with an isolated north-south dipole vortex is a stationary solution in an
inviscid equivalent barotropic atmosphere and resembles the blocking flow pattern in the real
atmosphere (McWilliams, 1980). Because the obtained time-mean second-order circulation in-
duced by imposed infinitesimal transient eddiesis very similar to the basic flow, HM concluded
that the eddy straining mechanism does work effectively for the maintenance of the basic flow
comprised of the modon solution.

Although these two studies indicated the important role of the eddy straining mechanism in
the maintenance of the diffluent flow, the sensitivity of the effectiveness of thismechanismto the
assumed basic flow and the property of eddies generated by the wavemaker was not examined.
Moreover, there are some problems in the numerical procedure in HM: first, the channel width
assumed in HM is too narrow to represent the modon solution which is analytically derived
in an infinite —plane. The streamfunction field of the modon solution in their channel model
is noticeably distorted not only near the channel walls but also in the dipole vortex region.
Second, the linear stability of the basic flow in their channel model was not confirmed. Thus,
the obtained second-order flow induced by perturbations could be contaminated by unstable

modes and does not necessarily represent the effect of the eddies propagating from upstream of



the diffiuent region.

Recently, Maeda et a. (2000) examined the eddy straining mechanism in a barotropic model
on a sphere for realistic basic flows obtained from the observational data. They noted that the
effectiveness of the eddy straining mechanism depends on the assumed basic flows and the
imposed eddies. However, since the assumed basic flows are not any stationary solution, it
is difficult to interpret the role of second-order induced flow by taking the time evolution of
the basic flow itself into account. Moreover, the dependence of the effectiveness of the eddy
straining mechanism on the characteristics of the imposed eddies was not revealed in detail.

In this study, we re-examine the effectiveness of the eddy straining mechanism for the main-
tenance of blocking flows, using an equivalent barotropic f—channel model identical to that
in HM, except with a channel twice as wide. This model has two stationary solutions when a
vorticity forcing associated with the modon solution is assumed as indicated by Pierrehumbert
and Malguzzi (1984) in a barotropic f-plane model: one solution closely resembles the modon
solution while another solution accompanies dominant zonal flows. Thus, by adopting these
stationary solutions under linearly stable conditions as the basic flow, it is possible to argue in
detail the effectiveness of the eddy straining mechanism without suffering from the interpre-
tation of the second-order flow. We will also indicate that the resultsin HM are considerably
affected by the channel wallsin comparison with the resultsin our wide channel model, and the
eddy straining mechanism is not so effective for the maintenance of the blocking flows. More-
over, the second-order flow is very sensitive to fine structures of the eddy PV flux divergence
field. Thissensitivity is designated by changing several properties of the imposed eddies.

Since the analysis in this study is performed restricted within the framework of quasi-linear
theory, the result obtained in this study is valid for infinitesimal transient eddies, and it is nec-
essary to conduct fully nonlinear experiments for the next study. However, we think that the
guasi-linear analysisin thisstudy is helpful to improve our understandings on the time evolution

of blocking flowsin the nonlinear experiments.



2.2 Mod€

2.2.1 Model description
We use an equival ent barotropic quasi-geostrophic potential vorticity equation on as-channel
with a vorticity source V2y*, Ekman friction, and a scale-selective hyper-diffusion term:

0
24 30.Q) = AV - V2) - Ty, (2.1)

Here, V2 and J denote the horizontal Laplacian and Jacobian operator, A and v are the Ekman
friction and the hyper-diffusion coefficient,  the streamfunction, and q the potential vorticity
(PV) defined by

q= fo+8y+ VY —yy. (2.2)

In (2.2), fo and B are the Coriolis and beta parameters, respectively; y* = f2/gH, where g is
the acceleration of gravity and H is the equivalent depth. Because we will examine isolated

structures in a steady uniform zonal flow U, ¢ and g are split into zonal and isolated eddy

components;
XV, t) = -Uy+u(xV,t),
(X y,t) y wN( Y. t) 23)
A% ¥Y,t) = de(y) + A%y, 1),
where
O = fo + By = fo+BY + 72Uy,
and

G=V4 -y

As shown in HM, for the existence of isolated stationary structures like modon solutions,
which satisfy ¢ — 0forr = (X2 + y?)Y/2 — oo, the zonal flow U has to be more barotropic than

the isolated structure, i.e.,

7002 > 72. (2.49)



A cyclic boundary conditionisimposed at X = —Lyr and X = Ly

WX Y, 1) = g(X+ 2nly, Y, 1). (2.5)

Since two rigid walls of the channel are assumed aty = —Lyr/2 andy = Lyn/2, the following

conditions for the meridional wind and the zonal mean of the zonal acceleration

Lxﬂ
and f Lﬁ(_ )dx 0, (2.6)

are applied at these walls.
Substituting (2.3) into (2.1), we obtain the following equation for isolated eddy components:

aq
E+J(w Y. 8+ Boy) = AV — V2) —vVWo, (2.7)

where all variables and constants are nondimensionalized: t by L,/U, x and y by L, ¥ and
y* by ULy, G by U/Ly, B by U/Ly% ¥ by L2, 2 by U/Ly and v by U/L,%. We expand ¢ in
the following truncated orthonormal functions which satisfy the boundary conditions (2.5) and
(2.6):

Fa, =V2sinmy,

Fkn = 2cosmysinnax, (2.8)

Fin = 2cosmycosnax,
wherem=1,2--- ,M,n=1,2,--- N, anda = Ly/Ly; the aspect ratio of this channel isgiven
by 2/a. Substituting the spectral expansion (2.8) into (2.7), a set of M x (2N + 1) ordinary

differential equations for the expansion coefficients x;(t) is obtained.

2.2.2 Modon solutions

For an infinite B-plane, if we assume different linear functional relationships between q and
W for the interior and the exterior regions of a circle with the center at the origin (x,y) = (0, 0)

and theradiusry, i.e.,

VA — Y2 + By = ay - Y), (2.9)
where
a for r <ry,
a= 1 0 (2.10)
a for r>ro,



there is a set of isolated stationary solutions called “modon” for theinviscid caseof 1 = v =0
in (2.7) (Stern 1975). Isolated eddy components vanish in the far field, i.e., y — 0 for r — co.

Thisgives
a = B (2.11)

from (2.9). From the assumption of isolated structures, i.e., [ [ |Vy|?dxdy is finite, the first
order K-Bessel function is adopted as the solution of r > ry. Moreover, the condition that ¢ is

finiteat r = 0 impliesthat a; < —y?. Here, the solution can be written as

{ro Ka(kr) _ r}X, for r>rg

v = Ki(kro) ~'r (2.12)
k—2{r _ rpatin) }X for r<r -
20 23 (kre) 1 °

where k2 = 42 — B, k2 = —(¥? + &), Ky and J; are the first order K- and JBessel function,
respectively. Finaly, the condition that the velocity is continuous at r = r yields the relation

between 1 and ry.

2.2.3 Parameter values and truncation leve

In the numerical experiments, we use the following parameter values according to HM:

U =138 ms,
B=16x10"" mis?
Be = 1.28 mis?t

(2.13)
L, = 1/y = 845 km,

a; =-39%x10% m=2,

2nLy = 42,000 km.

With these parameter values, Eq. (2.7) permits the existence of an analytical modon solution
(2.12) with the radius of ro =2,430 km. In order to examine the effect of the lateral bound-
aries on the model behavior, we analyze the model behaviors with two different meridional
channel widths: narrow channel (rL, =10,500 km) corresponding to HM and wide channel
(rL, =21,000 km).

The truncation wave number adopted for the narrow channel is M = 21, N = 42 while

M = 42, N = 42 for the wide channel. Thus, the horizontal resolution is the same for these two
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models and is fine enough to represent the dynamics of the modon solution (see McWilliams et
al. 1981). The hyper-diffusion coefficient v is given to have an e-folding time of 1 day for the
component of M = 21 and N = 42 for both models.

2.2.4 Method for linearized experiments

In order to assess the role of the migrating disturbances, which correspond to the synoptic
eddies, in the maintenance of the basic flow, we examine the time-mean flow induced by in-
finitessmal disturbances generated by an imposed wavemaker forcing. For thisanalysis, we use

the following perturbation expansion by a small parameter &:

(Z(X’ Y, t) = lﬂo(X, y) + 81/’1(X, Y, t) + 82W2(X, Y, t) + 0(83)’ (2 14)
A%, Y,1) = do(X Y) + &C(X Y, 1) + £%a(X, ¥, 1) + O(&%).
Substituting (2.14) into (2.7), and equating termsin the same order of ¢ gives
6X 2+ (0. %) +ﬁw = VY = Vo) = vV, (2.15)
(— + —)Ch +J(¥1, Qo) + (Yo, ) +ﬁoo S+ AVAY + Vo = Fy, (2.16)

and

(— + —)Q2 + J(W2, to) + I(Wo, 02) +ﬁoo 2 4 AV + vV, = (Y1, ). (2.17)

Here, the vorticity forcing V2y* is assumed to have a magnitude of O(1) such that the basic
flow yo isastationary solution of (2.15), and F; isan imposed wavemaker to generate migrating
eddies y,. We further prescribe V2y* by the vorticity distribution associated with the modon
solution (2.12). Thus, we can expect that a stationary solution similar to the modon solution
(2.12) isobtained as abasic flow v in the channel model. We use the revised Marquadt method
to obtain stationary solutions of (2.15) (see Mukougawa 1988).

The linear stability of the basic flow ¢ for infinitesimal disturbances y; is examined by
using (2.16) without wavemaker forcing, i.e.,, F; = 0. By using the spectral expansion (2.8),
Eq. (2.16) without F; issymbolically written as:

dx
g TAX=0, (2.18)
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where the vector x(t) consists of the expansion coefficients of eddy streamfunction 4, and A
isan M(2N + 1) x M(2N + 1) Jacobian matrix. The stability property of the basic state /g is
examined by obtaining eigenvalues of the matrix A.

Now, the time-mean effect of infinitessimal disturbances generated by the wavemaker F; on
the basic flow y is assessed in the framework of a quasi-linear theory by the following pro-
cedures. First, we perform time integration of (2.16) for 50 days by using a 4th-order Runge-
Kutta method with an imposed wavemaker F;. According to Shutts (1983), the wavemaker is
prescribed by
3r(x —

Xo—1) .
— ax } sinf

(Y — Yo)

F]_: F~1$in{ Ay

} cos{

X —
al AXXO) 3 (2.19)
for Xo < X < X} AX = X1 —Xo; Yo < Y < V1; Ay = y1—Yo Where F; isaconstant; otherwise F; = 0.
Note that F; generates disturbances propagating eastward with the background uniform zonal
wind speed (unit). The rectangular wavemaker region defined by Xo, X1, Yo and y; is located
well upstream of the model origin (x,y) = (0, 0) where the diffluence associated with the basic
flow exists.

Second, the last 45 days of the integration period, which are quite long compared with the
characteristic period of synoptic eddies, are used to compute the time-mean eddy PV flux di-
vergence J(y1, 1), where the overbar means the time-average. Finally, we obtain the induced

time-mean second-order flow v, by solving the time-averaged equation of (2.17):
s P} — _ o, — .
% + J(¥2, Qo) + I(Yo, Tp) +ﬁw£ + AV + vVop = =I(Y1, Q). (2.20)
Note that the eddy PV flux divergence V- (vi0y), which isalso expressed as J(y1, 01) by using
the wind vector v; = (—dy1 /0y, Oy1/0X), acts as the forcing term for y,. From the similarity
of the spatial structure of ¥, to the basic flows, we could infer atendency of the time evolution
of the basic flow against the dissipative process due to an ensemble effect of imposed transient
eddies.
The steady response of the second-order flow , dueto —J(¥1, 01) in (2.20) is also examined
by the singular value decomposition (SVD) analysis (see Navarra 1993; Itoh and Kimoto 1999;

Maedaet al. 2000). The analysisisbased on thefollowing symbolically written equation (2.20):

Ay = T, (2.21)
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where the vectors y and f represent the spectral expansion coefficients of ¥, and —J(y¥1, 01),
respectively; the matrix A in (2.21) is the same that in (2.18). Then, the SVD of the matrix A
gives the expansion of the induced second-order flow y in terms of the right singular vectors &;
(i=12"---,M(2N +1)):

M(2N+1)

e
y= le <O_i§>fi, (2.22)

where (-) indicatesthe inner-product, o (0 < o1 < 02+ - -) and ¢ are thei-th singular value and
the i-th left singular vector. The singular values satisfy AAT¢, = a?{i or ATAE = aizfi, where
the superscript T means the transpose. Sets of vectors {£;} and {¢;} construct orthonormal basis,
respectively.

From (2.22), we find that the flow pattern associated with &; will dominate the v, field if
the coefficient (f - £;)/o; of thismode j is larger than the amplitude of the other modes i for
I # j. In particular, if the smallest singular value o-; is much smaller than the others while the
projection of theforcing f onto each left singular vector ¢, (f - i), has acomparable magnitude
among all modes, the second-order flow v, becomes very similar to &;; this is expected when
the basic flow o satisfies near-resonant condition, i.e., oy ~ 0. For near-resonant basic flows,
detailed structures of the forcing f are irrelevant to determine the spatial structure of v, field
except for the sign of (f - 1) which controls the polarity of y,.

2.3 Narrow channel model

In this section, we describe the results in the narrow channel model with lateral width 7Ly =
10, 500 km which isthe same asthat in HM.

2.3.1 Multiple stationary solutions

We numerically obtain stationary solutions of (2.15) by assuming two initial guesses. oneis
the modon solution of (2.12) and the other isyo = 0. Obtained branches of stationary solutions
are shown in Fig. 2.1 where the Ekman friction coefficient A is used as a bifurcation parameter
and the ordinate denotes the kinetic energy of stationary solutions o normalized by that of

the analytic modon solution of (2.12). In this parameter range, the multiplicity of stationary
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solutions is clearly observed. Since the flow pattern closely resembles the analytical modon
solution, the upper branch solutions (Fig. 2.2a) will be referred to as “blocking solution”. On
the other hand, the solutions belonging to the lower branch (Fig. 2.2b) have relatively weak
zonally asymmetric components, and uniform zonal flow components dominate in the flow
pattern. Thus, we will call this solution “zonal flow solution”. With the increase of A, the lower
branch approaches the upper branch very closely, but a bifurcation point does not exist in this
parameter range. The existence of similar multiple equilibria of isolated solutions was reported
in Pierrehumbert and Malguzzi (1984) for an f-plane barotropic model, and also in Yamagata
et a. (1990) for aB-plane equivaent barotropic model.

The linear stability property of stationary solutionsis also depicted by two different symbols
in Fig. 2.1. The blocking solution becomes unstable for 4 < 0.13 day 1, while the zonal flow
solution is stable in this parameter range. The growth rate of the most unstable mode for the
blocking solution becomes larger with the decrease of A asshown in Fig. 2.3a- when A = 0, the
growth rate attains the maximum value of 0.15 day~1; this unstable mode is stationary with zero
frequency.

We also confirm the instability of the analytical modon solution (2 = v = 0) in a higher
horizontal resolution model with M = 42 in (2.8). The numerically obtained fastest growing
mode (Fig. 2.3b) for the analytical modon solution has a large amplitude in the center of the
channel. The flow pattern of thisunstable modeissimilar to that obtained by thetimeintegration
from the initial condition composed of the westward-propagating modon solution as shown in
Nycander (1992), which also gave a theoretical proof on the linear instability of the modon

solution.

2.3.2 Second-order flow

Now, we will examine the second-order induced flow v, associated with transient perturba-
tions forced by a prescribed wavemaker of (2.19). When the basic flow is unstable to infinites-
imal perturbations by assuming a small value of 4, it is difficult to assess the effect of imposed
perturbations on the basic flow because the obtained induced flow will be contaminated by
growing unstable modes. On the other hand, if we assume a large Ekman friction coefficient A

to assure the stability of the basic flow, the transient eddies forced far upstream of the diffluent
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region of the basic flow will fade away before reaching the diffluence and producing significant
vorticity flux. Thus, we set 1 = 0.12 day~* (denoted by open circlesin Fig. 2.1) at which the
blocking solution is marginally stable.

First, we consider the effect of perturbations on the blocking solution. Figure 2.4a shows
an instantaneous field of the perturbation streamfunction v, at day 30 superimposed on the
basic flow . The hatched rectangular area denotes the wavemaker region given by (2.19),
where we set aXy = —-3n/4, aXy = —n/4, Yo = —n/6, y1 = n/6. The zona wavelength and
the period of the eddies forced by this wavemaker are 7,000 km and 5.8 days. The meridional
wavelength of this perturbation is the same as the zonal wavelength i.e., the imposed eddy is
isotropic. Approaching the diffluent region, perturbations expand in the lateral direction and
shrink in the zonal direction. We also see a phase tilt associated with the differential advection
by the basic flow v in the upstream of the diffluence. The time-averaged PV flux divergence
J(1, au) in (2.20) associated with the perturbationsis shown in Fig. 2.4b where the wavemaker
region is masked. In the upstream of the diffluence, the horizontal distribution of eddy PV flux
divergence is anti-symmetric with respect to the center of the channel y = 0. There is enhanced
divergenceto the north of y = 0 and convergence to the south in just upstream of the diffluence.

Second-order induced flow -, forced by the eddy PV flux divergence in the downstream re-
gion of x; inFig. 2.4bisshownin Fig. 2.4c. Theflow pattern is characterized by a north/south,
anticyclonic/cyclonic vortex dipole, and is amost identical to that obtained in HM. Since the
second-order flow has a similar horizontal structure to the basic flow and the polarity isaso the
same, we can anticipate that the transient disturbances have atendency to enforce the diffiuence
of the basic blocking flow and the eddy straining mechanism does work in the narrow channel.

In order to investigate the sensitivity of the second-order flow i, to the characteristic of the
imposed forcing, we proceed the singular value decomposition analysis for the matrix A in
(2.18). Figure 2.5a indicates that the smallest singular value o-; is amost two orders of mag-
nitude smaller than the second smallest one. Moreover, the right singular vector &, associated
with o1 has a similar horizontal pattern to the second-order flow v in Fig. 2.4c. On the other
hand, the corresponding inner-product ({; - f) has a comparable magnitude with (¢; - ) for
i # 1 (not shown). Thus, in thisnarrow channel, we find that the basic flow isin a near-resonant

condition, and the induced second-order flow isirrelevant to the characteristic of the eddy forc-
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ing except for the polarity of the dipole structure. We also confirmed that the results for the
blocking basic flow do not depend on the Ekman friction 2 when the basic flow is stable.

We have also performed the analysis on the second-order flow for the zonal flow solution but
refrain from describing the results here because the obtained results are identical to those in the

wide channel model documented in the next section.

2.4 Wide channd model

The streamfunction of the blocking solution in the narrow channel is noticeably deformed
from the analytical modon solution, especially near the lateral boundaries. In order to reduce
the influence of the boundaries to the results, we extend the channel width into twice the narrow
channel width (7L, =21,000 km). We also increase the lateral truncation wave number M in
(2.8) from 21 to 42 so as to retain the same horizontal resolution as in the narrow channel.

Figure 2.6 showsthe bifurcation diagram of the blocking solution and the zonal flow solution
asinFig. 2.1. Thedistortion of the streamfunction of the blocking solution (Fig. 2.7a) is rather
reduced not only near the boundaries but also in the center of the channel: the amplitude of the
dipole structure is dightly larger in the wide channel. Note that the contour interval in Fig. 2.7
isone half of that in Fig. 2.4 due to the nondimensionalization. The structure of the zonal flow
solution (Fig. 2.7b) is noticeably unchanged. The linear stability property of both stationary
solutions remains almost the same as that in the narrow channel: the blocking solution becomes
unstable when A is smaller than 0.13 day*; the zonal flow solution is stable in the parameter
range examined in this study. The analytical modon solution represented in the wide channel
is also linearly unstable to infinitesimal perturbations. Thus, we could infer that the lateral
boundaries in this channel model does not directly affect the stability property of the analytical
modon solution. The growth rate and horizontal structure of the most unstable mode for the
analytical modon solution are almost the same as those in the narrow channel.

Figure 2.8a shows an instantaneous streamfunction field of the perturbation v, at day 30
when the blocking solution is assumed as the basic flow. Since we focus upon the behavior in
the center of the channel, only the central domain of —7/4 < y < x/4 in the model will be

shown in the following figures. The eddies are forced by the wavemaker F; of which regionis
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denoted by the hatched rectangle in Fig. 2.8; the wavemaker region has the same dimensional
horizontal size as in the narrow channel model. The deformation of eddy structure and the
horizontal distribution of the accompanied PV flux divergence upstream of the diffiuence (Fig.
2.8b) are almost the same as those in the narrow channel model.

However, we find a remarkable difference in the second-order flow ¢, induced by the eddy
forcing. In Fig. 2.8c, aquadruple structureisevident instead of the dipole structurein Fig. 2.4c.
The downstream north-south vortex pair has a comparable magnitude to that of the upstream
vortex pair. The polarity of these vortex pairs is opposite to each other, and the second-order
flow has a tendency to shift the basic blocking vortex pair downstream instead of enforcing
them.

Thedifference in the response of the second-order flow to almost the same PV flux divergence
isalso confirmed in the singular value decomposition analysisin Fig. 2.9afor the wide channel.
The smallest singular value o-; is several times as large as that in the narrow channel, and
its magnitude is comparable to the second smallest singular value. Although there is a weak
guadrupole pattern in the streamfunction field of the first right singular vector &, (Fig. 2.9b),
the zonal flow component which isabsent in Fig. 2.8c dominatesin its flow pattern. Moreover,
the magnitude of the coefficient (£ - f /o1 in (2.22) associated with £; isnot dominant as shown
inFig. 210 but ({3 - f)/o3 and ({11 - T)/o1; are significant instead. Each pattern of &3 and £14
has a quadruple structure (not shown). Thus, the second-order flow -, for the blocking solution
in the wide channel has relatively strong sensitivity to the characteristic of the imposed eddy
forcing. Thisimplies that the resonant enhancement mechanism of the blocking solution by the
transient eddies found in the narrow channel as well asin HM is due to the narrow meridional
extent of the channel model. We will further examine the sensitivity of the second-order flow
to several eddy forcing characteristics in the next section.

Figure 2.11a shows an instantaneous perturbation streamfunction field at day 30 when the
zonal flow solution (Fig. 2.7b) is assumed as the basic flow . The perturbations induced
by the same wavemaker F; (hatched region) asin Fig. 2.8 have rather complicated structure.
Eddies in the center of the channel become fragmented associated with the stagnation region
of the basic flow, and fade away due to the Ekman friction and the biharmonic viscosity. On

the other hand, the meridionally split eddies due to weak diffluence of the basic flow survive
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further downstream compared with those for the blocking solution. Thus, the distribution of the
time-mean eddy PV flux divergence (Fig. 2.11b) is concentrated in the center of the channel and
has a smaller meridional scale compared with that for the blocking solution (Fig. 2.8b). The
second-order flow induced by the time-mean eddy PV flux divergence is shown in Fig. 2.11c.
Because its horizontal pattern is similar to the zonal flow solution (Fig. 2.7b) and its polarity is
also the same, it is suggested that the imposed perturbation has an effect to maintain the basic
zonal flow solution. The singular value decomposition analysis of the zonal flow solution shows
that the resonant enhancement mechanism of the basic flow is not efficient, and the second-order

induced flow crucially depends on the characteristic of the imposed wavemaker (not shown).

2.5 Sensitivity of the second-order flow totheimposed eddies

The results in the previous section suggest that the second-order induced flow for the block-
ing basic flow is very sensitive to the characteristic of the imposed eddies. In order to illustrate
this high sensitivity, we examine the dependence of the second-order flow on the meridional
location and the horizontal size of the wavemaker. The blocking solution is assumed as the

basic flow in this section.

25.1 Meridional shift of the wavemaker

Figure 2.12 shows a result when the wavemaker is shifted to the south by 15% of the modon
radiusrg. Theinstantaneous streamfunction field of ; at day 30 (Fig. 2.12a) isalmost identical
to that in Fig. 2.8a except that eddies in the southern jetstreams retain larger amplitude com-
pared with those in the northern jetstreams. The eddy PV flux divergence pattern (Fig. 2.12b) is
also almost identical to that in Fig. 2.8b: a north/south, divergence/convergence dipole pattern
resides upstream of the diffluence. On the other hand, the i/, flow patternin Fig. 2.12c is dras-
tically deformed in comparison with Fig. 2.8c: a dominant anticyclonic vortex is located near
y = Oinstead of the quadrupol e pattern, therefore this second-order flow tendsto shift the vortex
pair of the blocking basic flow southward fromitsoriginal position. This second-order flow will
destroy the blocking dipole since the anti-symmetry with respect toy = 0 in the blocking dipole
istotally lost in Fig. 2.12c; the meridional shift of the wavemaker only by 5% of the modon
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radius is enough to extinguish the anti-symmetry of the second-order flow. Thisis an example

of high sensitivity of the second-order flow to the meridional shift of the wavemaker.

2.5.2 Horizontal size of the wavemaker

Next, we examine the sensitivity of the second-order flow to the horizontal scale of the im-
posed wavemaker Ax and Ay in (2.19) while the aspect ratio of the wavemaker is kept constant
asin section 2.4.

The further increase of the horizontal scale of the wavemaker does not give rise to qualitative
changein the second-order flow; the second-order flow retainsatendency to advect the blocking
dipole downstream (not shown). On the other hand, the decrease of horizontal scale of the wave-
maker brings about a drastic change in the second-order flow. Figures 2.13 and 2.14 show the
results for the prescribed zonal wavelength of eddies are 6,300 km and 5,600 km, respectively.
The horizontal deformation of eddies associated with the blocking dipole in thesetwo figuresis
apparently the same. The time-mean eddy PV flux divergence in Fig. 2.13b is also amost the
same as that in Fig. 2.14b except that there is a dight enhancement of the north/south, diver-
gence/convergence along the split jets around the blocking dipole in the former. However, the
second-order flow is distinctively different between them; in Fig. 2.13c, aweak dipole with the
opposite polarity to the blocking dipole exists within the dipole of the basic flow while strong
dipoles with the same polarity as the blocking resides outside the dipole of the basic flow. This
pattern will tend to diffuse the vortex pair associated with the blocking; The flow in Fig. 2.14c
has a quadrupole structure with the opposite polarity to that in Fig. 2.8c, and tends to shift the
blocking dipole upstream.

These two experiments suggest that a small difference in the time-mean eddy PV flux diver-
gence has a possihility to raise a large difference in the second-order induced flow. Moreover,
the effectiveness of the eddy straining mechanism is very sensitive to parameters prescribing

the horizontal structure of migrating eddies.
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2.6 Quantitative evaluation of the eddy straining effect

In sections 3,4 and 5 in this chapter it has been shown that the effectiveness of the eddy
straining mechanism depends on the basic flow and the horizontal structure of the prescribed
eddy forcing, and that the modon solution is not maintained by the eddy straining mechanism
in the quasi-linear framework studied in sections 3, 4 and 5. Here, we will re-examine the eddy
straining mechanism in fully nonlinear framework including the interaction between the basic
flows and transient eddies, with particular we pay attention to the eddy straining mechanism
compared with the dissipation of diffluent flow due to the Ekman friction.

We use the following fully nonlinear, nondimensionalized PV equation with the imposed

eddy forcing term F:

I e i}
430 - .G+ Buy) = AT - VD) + F = oV, (2.23)

where iy and § are the streamfunction and the PV (see section 2 in detail). Based on the time
integration of Eq. (2.23), the eddy straining effect is quantitatively evaluated by examining the
time evolution of the PV field from the initial condition given by the blocking solution (Fig.
2.2a). If the dipole structure associated with the blocking solution will be maintained against
the dissipation without the forcing term AV2y* in Eq. (2.23), we could conclude that the eddy
straining mechanism is effective to maintain the diffluent flow.

Parameter values, boundary conditions and time integration scheme are the same as those
in Section 2 in this chapter: the Ekman friction coefficient A is 0.13 day~! corresponding to
e-folding time of 7.7 days; the hyper-diffusion coefficient v is determined to have an e-folding
time of 1 day for the wave component (m, n) = (21, 42). The blocking solution adopted for the
initial condition islinearly stable for these parameter values. The eddy forcing F isimposed in

the rectangular region in Fig. 2.15a, and is given by the following wavemaker forcing:

~ . 7(X— %) 3r(x— % —t) . 71(y = Yo)
F -0
F = S (Xl—Xo)}COS{ (X1 — Xo) ein Y1—Yo

0 elsawhere.

b forxo S X<x,YoSYy<y:

(2.24)
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The forcing function of Eg. (2.24) is amost the same as in Eq. (2.19) except for the phase
factor 6, which specifies phase of the imposed transient eddies.

The amplitude of the wavemaker F isset at 5.2 x10~! 572 (120.0 in nondimensionalized unit)
which will enforce the maximum value of the relative vorticity V2y for the blocking solution
during 9.8 days, corresponding to 5.2x10!* s2. Thisvalue of F is 1.3 times larger than the
maximum value of the dissipation rate 1V} for the blocking solution. We have also performed
another experiment with F = 60.0. Results of these two experiments are qualitatively the same,
and we only describe the results for F = 120.0 in the following.

In the quasi-linear framework, the effectiveness of the eddy straining mechanism is evaluated
by examining the second-order flow induced by the time-mean PV flux divergence associated
with transient eddies for afixed basic flow. In the nonlinear experiments, however, this method
based on the time-mean is not applicable to evaluate the eddy straining mechanism since the
“basic flow” will evolve in time during the period of the time average. Thus, we use the fol-
lowing “ensemble mean” technique to obtain the phase-independent effect of transient eddies
on the basic flow. The average over the time integrations with different phase factor 6 in F of
Eqg. (2.24): we perform 20 integrations by changing the phase factor 6 by 7/10 in the range of
0 £ 6 < 2n. Thevorticity forcing V2y* isalso retained during thefirst 3.3 daysin theintegration
to maintain the diffluent flow until the maximum (or minimum) value of PV associated with the
imposed transient eddy encounters at the diffluent region at ax = —8/x, which indicated by the
vertical thick linein Fig. 2.15a.

The time evolution of the PV field § of the ensemble mean of each integration with the
transient eddy forcing of the zonal wavelength of 7000 km is shown in Fig. 2.15a. In this case,
axo = =31/4, ax, = —n/4, Yo = —n/6, y1 = /6 in Eq. (2.24). The vorticity forcing V2y* is
removed at day 0. On the other hand, time evolution of the PV for the integration without the
transient eddy forcing is shown in Fig. 2.15b. The maximum value of § in the ensemble mean
decreases monotonically (Fig. 2.15a) at ailmost the same rate as that in the time integration
without transient forcing (Fig. 2.15b) due to the dissipation terms. The horizontal pattern in PV
is also very similar to each other except for a little deformation in the diffluent region in Fig.
2.15a. Thus, we find that the eddy straining mechanism is not effective to maintain the difiluent

field against the dissipation.
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To further evaluate the quantitative contribution of the eddy straining mechanism in the non-
linear framework, time evolution of the maximum value in § for transient eddy forcing with
zonal wavelength of 7,000km (asterisk), 6,300km (open circle) and 5,600km (open square) is
shown in Fig. 2.16, respectively. The result for integration without eddy forcing is also shown
by closed circles. From this figure, we find that the dipole structure in the experiments with
transient eddy forcing decreases faster than that without eddy forcing. This fact does not de-
pend on the horizontal size of the imposed transient eddies. Thus, we confirmed that the eddy
straining mechanism in the nonlinear framework is not effective to maintain the dipole structure
of the blocking solution compared with the dissipation rate due to the Ekman friction. Thisis

consistent with the results obtained in the quasi-linear framework in section 2.5.
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2.7 Concluding Remarks

In order to examine the effectiveness of the eddy straining mechanism on the maintenance
of the blocking flow proposed by Shutts (1983), we investigate the mutual interaction between
migrating eddies and stationary basic flows by using an equivalent barotropic 8-channel model,
which is all the same as in HM except that the channel width is enlarged twice to reduce the
distortion of the flow field near the channel walls. The eddies which mimic the synoptic-scale
waves are generated by an upstream wavemaker forcing. Their amplitude isassumed to be small
enough so that the interaction is described by a quasi-linear framework as in HM. The model
possesses two stationary sol utions accompanying isolated structuresin prescribed uniform west-
erlies when the vorticity forcing associated with the analytical modon solution is assumed: a
“blocking solution” which closely resembles the modon solution and a ”zonal flow solution”
which is characterized by dominant zonal flows. The effectiveness of the eddy straining mecha-
nism is assessed by the resemblance between the basic flow and the second-order flow induced
by the time-averaged eddy potential vorticity (PV) divergence asin HM. The following results

are obtained.

e When the basic flow is prescribed by linearly stable blocking solutions, the second-order
flow induced by eddies has a quadruple structure, which tends to shift the blocking dipole
downstream, instead of the dipole structure enforcing the blocking as shown in HM. On
the other hand, the time-averaged eddy PV flux divergence has almost the same pattern
as in HM: north/south, divergence/convergence dipole upstream of the diffluence of the

basic flow.

e The superficial enhancement of the blocking dipole by the eddy straining mechanism
indicated by HM is attributed to the fal se resonance characteristic of the basic flow dueto

the narrow channel model. Thisis also confirmed by the SVD analysis.

e The second-order flow for the linearly stable zonal flow solutions has a tendency to en-
force the weak diffluence associated with the basic flow. The enhancement is not due to

the resonant property of the basic flow but depends on the properties of imposed eddies.

e The second-order induced flow for the blocking solution is drastically deformed by a
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negligible distortion of the eddy PV flux divergence field due to a small change in the
property of imposed eddies, such as their horizontal scale and the meridional position of

the trains of eddies relative to the diffiuent region.

e The eddy straining mechanism is not effective to maintain the dipole structure of the

blocking solution against the dissipation.

Thus, our study revealed that the eddy straining mechanism for the maintenance of the block-
ing flow against the dissipation is hot so effective as indicated in the previous studies, and its
effectivenessis also very sensitive to the properties of migrating eddies as well as the assumed
basic flow.

Furthermore, the high sensitivity of the second-order flow to a fine structure in the eddy PV
flux divergence field will suggest that the downgradient eddy PV flux divergence structure up-
stream of the blocking flow does not necessarily imply the enforcement of the blocking flow by
the synoptic eddies; observational studies (e.g., Shutts 1986; Mullen 1987) usually insist the en-
forcement only by indicating such aPV flux divergence field, or the corresponding geopotential
tendency field simply obtained with an inverse Laplacian operator. In order to designate alarge
difference between the second-order flow and the tendency field from the PV flux divergence
field, Fig. 2.17aand Fig. 2.17b show the streamfunction tendency fields dy/dt obtained by
—~V-23(y1, 1) for the eddy PV flux divergence field in Fig. 2.13b and Fig. 2.14b, respectively.
These two streamfunction fields are too similar to be distinguished while there is noticeable
difference in the second-order flow as already shown. This difference suggests the importance
of zonal asymmetry of the basic flow in computing the second-order flow. Moreover, the high
sensitivity of the second-order flow to a fine structure of the eddy PV flux divergence implies
that a data set with high spatial resolution is necessary to assess the role of the synoptic eddies
on the maintenance of the blocking flow although a resultant second-order flow has arelatively
large horizontal scale.

These results obtained in the framework of a quasi-linear theory are confirmed by the non-
linear framework. Since it is suggested in this study that the effectiveness of the eddy straining
mechanism depends on the basic flow, the examination of the eddy straining mechanism for

another basic flow is necessary to understand further the role of the synoptic disturbances on
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the blocking flow. Moreover, the possibility to form the blocking flows only by the synoptic
eddies from basic states with prevailing zonal flows suggested by Shutts (1983) has to be also

examined in order to reveal the role of synoptic eddiesin the dynamics of the blocking.
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Chapter 3

Effects of Transient Eddiesand L ow
Frequency Variability on Blocking

Formation and M aintenance

3.1 Introduction

Although there is downgradient time-averaged eddy PV flux dueto transient eddies, the dif-
fluent flow associated with the modon solution is not maintained against the Ekman dissipation
as indicated in the previous chapter. This could suggest the sensitivity of the eddy straining
mechanism on the prescribed basic flow. The important property of the basic flow which af-
fects this sensitivity could be its temporal behavior as well as its spatial structure. The basic
flow prescribed in the previous chapter is essentially stationary in time except for the gradual
damping due to the Ekman dissipation, where the interaction between transient eddies and basic
flow might be weak. On the other hand, low-frequency variabilities of the basic flows would
perhaps enhance the efficiency of the eddy straining effect to build up the blocking flows. To
make clear the effectiveness of the eddy straining mechanism, thus, it is necessary to revea
the most important property of the basic flows to affect the effectiveness of the eddy straining
mechanism.

In fact, recent studies analyzing the observational data (Nakamura et al. 1997) and general
circulation model (GCM) output data (Cash and Lee 2000) suggest the important role of low
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frequency variability as well as the synoptic disturbances in the formation process of blocking.
By examining the respective contribution of the low-frequency variability and high-frequency
synoptic scale eddy to the time tendency of the geopotential height field of composite blocking
flows, Nakamura et al. (1997) indicated that the following property of blocking flows in the
Pacific and Atlantic sectors: contribution of synoptic eddies is dominant for the formation of
the blocking flows in the Pacific sector while the existence of the low-frequency variability
is crucial for the formation of the blocking in the Atlantic sector, where the eastward energy
propagation associated with low-frequency variability in the upstream region of the diffluence
due to blocking is frequently observed before the onset of blocking event.

Cash and Lee (2000) also examined each contribution of synoptic-scale transient eddies and
low-frequency variabilities to the formation and maintenance of blocking events reproduced
in an atmospheric GCM (AGCM) long-term integration. The contribution is quantitatively
evaluated in terms of the streamfunction tendency based upon the barotropic vorticity equation
appliedto asingle pressurelevel (300 hPa) of the AGCM. They found several blocking eventsin
which the low-frequency variabilities have amajor contribution to the formation of the diffluent
flows. the downstream energy propagation associated with low frequency variability in the
upstream of the diffiuent region before the onset of the blocking events emerges frequently.
They also noticed that the effect of synoptic scale transient eddies as represented by the eddy
straining mechanism might be secondary during the onset of the blocking formation whileitis
crucial for the maintenance of blocking flow.

Although these two studies suggested that the importance of low frequency variation on the
blocking flows, there is an inevitable restriction in their evaluation since their analyses are basi-
cally based upon the barotropic equation. Thus, the inevitable existence of large residual term
which results from the vortex stretching term associated with the divergent winds as well asthe
dissipation terms makes the exact evaluation impossible. 1n addition, the thermodynamic pro-
cesses such as heat flux and diabatic heating involved in the blocking events are totally neglected
in their analyses, which could also obscure the results on the importance of the low-frequency
variability during the blocking formation. Thus, in this chapter, we try to evaluate exactly each
contribution of low-frequency variability and synoptic scale eddies on the formation and main-

tenance of blocking flows occurring in a barotropic mechanistic model. In this framework, the
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blocking flows could be caused only due to barotropic mechanical process, and we could figure
out the whole process of blocking flows without any residuals.

In this chapter, we also use a3-channel barotropic model with an isolated topography, which
would force low-frequency variations (Jin and Ghil 1990), and an imposed eddy forcing, which
would generate transient eddies resembling the synoptic scale eddies. This model is basically
the same as that used by Kalhay-Rivas and Merkine (1981) who showed that transient eddies
could enhance the ridge of quasi-stationary eddies and forms diffluent flows akin to blocking.
However, the imposed eddy forcing in their study is located upstream of the isolated topog-
raphy opposed to the real atmosphere, where the transient synoptic scale eddies are generated
in high baroclinicity regions located in the downstream of major large scale topographies. the
Pacific (Atlantic) storm tracks resides the downstream of the Himalaya (the Rockies). With
this unrealistic position of eddy forcing, blocking flows occurs simultaneously in the upstream
and downstream of the isolated topography in their study. In this chapter, the eddy forcing will
be placed downstream of the isolated topography to avoid unrealistic features in their study.
In addition, we will carefully examine each contribution of low-frequency variations and eddy
straining mechanism associated with transient eddies in the formation of blocking flows, which
is not discussed in their study.

At first, the blocking criterion is established based on 10-day |ow-passfiltered streamfunction
field. To assess the contribution of low-frequency variations and high-frequency eddies to the
formation and maintenance of blocking flows, the high-frequency eddy field is defined as the
raw field subtracted from the low-pass filtered field, i.e., the low-frequency variations. The
separation of high-frequency eddies and low-frequency variations enables us to evaluate the
efficiency of the eddy straining mechanism for the maintenance of the blocking flows based

upon the low-pass filtered barotropic vorticity equation.

3.2 Mod€

The model used in this study is based on an barotropic quasi-geostrophic vorticity equation
with topography in acyclic g-channel whose width iszL, and lengthis 27l ,:

%v%p + Iy, Vi + By + fog) = AV + F —v(V?)3y, (3.1)
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where y denotes the streamfunction, h the height of the topography, H the mean depth of the
atmosphere, and A and v are the Ekman friction and the hyper-diffusion coefficient, V2 and J the
horizontal Laplacian and Jacobian operator, and ¥ is the forcing function of transient eddies,
which will be described in detail in section 3.4.

Boundary conditions are the same as that in chapter 1: cyclic condition in the zonal direction,

Y(xy.1) = e(X+ 21ly, y. 1)

at X = —Lyrand x = Ly isimposed; thetwo prescribed rigidwallsaty = —Lyr/2 andy = Lyz/2

set the meridiona boundary condition,

o Sl VN
& =0, ILxﬂa(—a—y)dX =0,

ay=-y/2and,/2. We also assume a constant uniform zonal wind (U), and the streamfunction
Wis

lﬁ(X, Y, t) = _Uy + ([)(X, Y, t) (32)

The following orthonormal functions

Fa, =V2sinmy,

Fka = 2cosmysinnax, (3.3

Fin = 2cosmycosnaxX,
wherem=1,2,--- ,M,n=12,--- N, and @ = L,/L are used for the spectral expansion of
the streamfunction ¢ in the channel domain asin chapter 1. The aspect ratio of this channel is
given by 2/a. By using these orthonormal functions, aset of M x (2N + 1) ordinary differential
equations for the expansion coefficients x;(t) is obtained.

An isolated topography is assumed to have a Gaussian shape in the zonal direction as in

Kanay-Rivas and Merkine (1981):

h = ho cos(y/ L) exp{—((X — %o)/AX)?},

where, hg isthe height of the topography, Ax the zonal width of the mountain, and X, the location
of the peak of the topography.
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Equation (3.1) is then nondimensionalized; t is nondimensionalized by 1/f, where f; is
2Q singy at the central latitude of the channel: x and y by L,. The following parameter val-
ues are used in this chapter: the central latitude ¢, of the channel is plated at 45° N, and
fo = 1.03x 10%s !, g = 1.62 x 10°"¥m™ s71, the zonal length of the channel xL, is given
by that of the latitude circle at 45° N (28,342 km), the two walls of the channel is placed at
15° N and 75° N, L, = 6,679 km, and the scale height H is 8.3 x 10°m. The truncation wave
number M and N in (3.3) used in this chapter isM = 21 and N = 42, which provides suffi-
cient spatial resolution to resolve synoptic-scale eddies. The assumed value of Ekman friction
coefficient 1 and the hyper diffusion coefficient v correspond to the damping time scale of 10
days (1 =[s]) and 1/6 hours for the smallest horizontal scale component of M = 21, N = 42
(v =[s™]).

Time integration in this chapter is carried out by using the 4th order Runge-Kutta scheme

with the time step of 1 hour. The model data are stored every 12 hours.
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3.3 Bascflow

In order to specify the basic states in Eq. (3.1) without ¥, we examine the bifurcation of
stationary solutions in a wide range of parameter values of the zonal wind speed U and the
topographic height h (10 m/s £ U £ 20 m/s, 600 mg h < 1000 m). Stationary solutions are
numerically obtained by the revised Marquadt method, which obtain local minimum point from
a specified initial guesses (Mukougawa 1988). Here, several hundreds of initial guesses are
given for several prescribed values of U and h.

In the framework of the linear theory, the wave component of (m,n) = (1,4) in Eq. (3.2
is expected to dominate the flow pattern in this parameter range since its resonant wind speed
Ur = B/{(m/Ly)? + (n/aLy)?} is given by 17.8 my/s. The bifurcation diagram of solutions for
h=900 misshown in Fig. 3.1a, where the ordinate shows the amplitude of the wave component
(mn) = (1,4),i.e, (s +y4°)"? for h = 900 m. We obtain two solution branches asin Fig.
3.1a. The upper branch denoted by squaresin Fig. 3.1a comprises of stationary solutions which
may have a pitchfork bifurcation point at U=15 my/s, and becomes linearly unstable for U < 15
mys (we do not obtain branch of stationary solution bifurcating from this bifurcation point).
The stationary solutions belonging to the lower branches denoted by circles in Fig. 3.1a also
becomes unstable at U=13 my/s, and a stable periodic solution emerges for U > 13 m/s. Thus,
this bifurcation is classified as the super-critical Hopf bifurcation. Each vertical bar in Fig.
3.1a shows the range of the amplitude variation in the periodic solution, which becomes larger
with the increase of U. Thus, for U > 16 m/s, one stable stationary solution and one periodic
solutions co-exist. The period of the limit cyclesisabout 16 days, and is almost independent of
U for this parameter range.

Figures 3.1b and 3.1c show the streamfunction of the unstable stationary solution and time-
averaged streamfunction of the periodic solution during one period for U = 14 my/s, respectively.
Thewave component of (m, n) = (1, 4) dominatesin both fields as expected by the linear theory.
The ridge just downstream of the isolated topography (ax ~ 2/5x) in the stationary solution
(Fig. 3.1b) is enhanced compared with that in the time-averaged field of the periodic solution
(Fig. 3.1c). Thisisalso seenin Fig. 3.1a

These two solution branches are also obtained in a wide range of parameter value of the
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topographic height h. While Hopf bifurcation in the lower branch appears for smaller U than
13 m/swhen hislarger than 900 m, it appears at larger U for smaller h. The stationary solution
in the upper branch becomes stable at larger U for larger h. Thus, the parameter range of U
where two stable sol utions co-exist becomes narrow for larger h. However the linear stability of
solutions depends upon the value of h; the zonal wind speed U at the Hopf bifurcation for the
lower branch becomes small with the increase of h, while U at the pitchfork bifurcation point

in the upper branch becomes large with the increase of h.
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3.4 Effectsof transient eddies

3.4.1 Dependenceon the basic flow

The obtained stationary solutions and the periodic solutionsin this parameter range explored
in our study do not exhibit distinct diffiuent flow such as the blocking. Thus, we impose a
transient eddy forcing on the basic flow prescribed by the stationary solutions or the periodic
solutions, and examine whether a distinct diffluent flow is formed. In this section, the relation-
ship between the formation of blocking flows and the basic flows is examined.

The eddy forcing # in Eq. (3.1) isgiven by

= o (X = Xo) (X=X -Ut) . 7(y—Yo) Ay v v

F sin{ Ax } cos| Ax }sm{—Ay }for Xg < X < Xq; AX = X1 — Xo;
F= Yo <Y <Y1 AY = Y1~ Yo

0 elsawhere.

(3.4)

Here, the eddy forcing region denoted by Xg, Yo, AX and Ay is shown by the the rectangular
inFig. 3.2 (aXg = —7n/12, Yo = —n/8, aAX = n/4, Ay = n/4). The forced transient eddies
have a zonal wavelength of 4724 km, and their phase speed is given by U. The eddy forcing is
located in the trough region of the basic flow just downstream of the isolated topography. The
amplitude of the eddy forcing F is varied between the nondimensionalized parameter range of
0.2 < ¥ £ 0.5, where the value of 0.2 corresponds to form the vorticity which is given by the
maximum value of the periodic solution in 3 hours for h=900 m and U=14 m/s.

The time integrations are performed for h=900 m and 11 m/s < U £ 17 my/s from the ini-
tial condition given by the stationary solution or the periodic solution. Distinct diffiuent flow
patterns similar to the blocking frequently emerged for U < 15 m/s when the amplitude of
eddy forcing ¥ is larger than 0.45. Thus, we set #=0.5 in the following experiments. With
this forcing amplitude, the asymptotic behavior of this system does not depend on the initial
condition.

For example, Fig. 3.2 shows the instantaneous streamfunction field at the day 928 for h=900
m and U=14 my/s. The enhanced anticyclonic circulation is located at ax=0 (Fig. 3.2a), and

associated diffluence is formed just upstream of this anticyclone as in Fig. 3.2b where the
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streamfunction of ¢ = ¢ — Uy isdepicted.

Since the variation accompanied by the diffluent flow has a distinct low frequency compo-
nent, we apply a 10-day low-pass filter to the output data so as to extract the low-frequency
variability. Variations associated with each transient eddy are mostly removed by this filter
since the imposed eddies has a period of 3.2-5.0 daysfor 11 m/s< U < 17 m/s.

We a'so apply an empirical orthogonal function (EOF) analysisto the 10-day |ow-passfiltered
datain order to obtain the dominant low frequency variation and to define the “blocking event”
during which the diffluent flow pattern asin Fig. 3.2b becomes prominent. The EOF analysis
on the covariance matrix of the streamfunction is applied for the rectangular region of —/2 <
aX < /2 in the channel model (see Fig. 3.3).

Thefirst modecalled EOF1 for U = 14 m/s, F = 0.5 and h = 900 m accountsfor 81.4% of the
total variance, and is characterized by an enhanced anticyclonic circulation located near ax=0
asshowninFig. 3.3. Theflow patternisvery similar to the“blocking” flows (Fig. 3.2a). Figure
3.4 shows the time variation of the principal component (PC) associated with EOF1 scaled by
its standard deviation (thick horizontal line). From this figure, we find that PC1 intermittently
has alarge value except for long quiescent periods during which PC1 has small negative values.
Moreover, most of the excited events with large PC1 last more than 10 days.

Hence, we define the blocking event in this channel model when PC1 exceeds one standard
deviation for more than 10 days. To ensure separation of events for compositing and filtering
purposes, two blocking events occurring less than 10 days apart are treated as a single event.
For other experiments with different values of U, we aso use EOF1 for U=14 my/sto define the
blocking event; “PC1” time series for these experiments is obtained by projecting streamfunc-
tion field onto EOF1 for U=14 m/s. This procedure will facilitate to examine the dependence
of the statitical property of the blocking event on the uniform zonal flow U * .

Table 1 show the number and total days of blocking events occurring during 2500 daysfor 11
m/s < U < 17my/s. The number of blocking events attains a maximum value at U =14 my/s, and
blocking events hardly occur for U > 16 mys. This result shows that the formation of blocking

events depends crucially on the basic flow.

1The flow pattern which is very similar to EOF1 for U = 14 m/s can be seen in EOF1 in the wide range of U.

In fact, this definition is verified by comparing with the time evolution of the streamfunction field
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3.4.2 Effectiveness of the eddy straining mechanism

In the previous section, we found that persistent diffluent flows similar to the blocking are
formed for some basic flows when the transient eddies are imposed in this model. In order to
examine the effectiveness of the eddy straining mechanism for the formation and maintenance
of diffluent flows, we will analyze the model behavior for h=900 m, U=14 my/s, F=0.5in detall.
The blocking events occur most frequently at U = 14 m/sintherange of 11 m/s< U < 17 m/s
(Table 1).

In the nonlinear framework, the examination on the eddy straining mechanism by comput-
ing the second-order flows due to PV flux divergence associated with high-frequency transient
eddies is not adequate since the assumption of the basic flow stationarity does not hold. On
the contrary, the basic flow evolves in time, and diffluent flow states (blocking flows) emerge
spontaneously from non-blocking statesin thismodel. Fortunately, thisevolution ismostly cap-
tured by the low-pass filtered field as shown in the previous section. Thus, we will assess the
eddy straining mechanism, by integrating the following vorticity equation, which governs the

evolution of the low-pass filtered field:

2—L -
6Vatw + I VA + By + fog) = VYV - AV (VA (35)

Here, GL denotes the low-pass filtered field defined by the 10-day |ow-pass filter (Blackmon
etal. 1986), and () the high-passfiltered one defined as the residual, i.e. v = Uy Equation
(3.5) could be obtained by applying the low-pass filter to Eq. (3.1) after decomposing the
streamfunction into the low-frequency part and high-frequency part. We also assume ¢’ g 0,

L
and ignore the high- and the low-frequency nonlinear interactions, suchasV - v'V - JL . We

found these terms to be unimportant compared with V- V'V -/~ retained in Eq. (3.5).
Thetransient eddy forcing term V- v'V2y/ - is obtained by using the data generated by along-
term integration of the model in the previous section. Thus, we could diagnose a one-way effect
of high-frequency transient eddy on the low-frequency field by integrating Eq. (3.5) forward in
time. We initialize Eq. (3.5) with the low-pass filtered streamfunction i at the onset of each
blocking event (day 0), 2.5 days prior to the onset (day -2.5), and 5 days prior to the onset (day
5). By comparing these results with time evolution of the low-pass filtered field in the model,

we could assess the effectiveness of the eddy straining mechanism for the maintenance of the
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blocking flow.

Figures 3.5, 3.6, and 3.7 show the composite streamfunction of the time integrated results
for individual blocking events (see Table 1). The key day for the composite is set at day O.
Although we find a distinct confluence just downstream of the wavemaker region a diffluent
region at ax = —r/3 for the low-pass filtered streamfunction at day O (Fig. 3.7), the composite
of the time integration of Eq. (3.5) from day -5 and day -2.5 does not indicate such distinct
diffluence downstream of the wavemaker region at day Oin Fig. 3.5c and Fig. 3.6b, respectively.
Thus, we find that the eddy straining mechanism is not effective to excite blocking states from
non-blocking zonal states.

In order to quantitatively evaluate the contribution of high-frequency transient eddies to the
formation and maintenance of the diffluent flow, we show the time evolution of the projection
of each composite JL onto EOF1 (Fig. 3.3) aong with PC1 time series (solid line) in Fig. 3.8.
The projection for the time integrations from day -5 (broken line) and day -2.5 (dotted line)
remains almost constant before day O is consistent with Figs. 3.5 and 3.6. The value is aso
scaled by the standard deviation of PC1. The variance of the projection among the blocking
events at day O denoted by the vertical lines for these two series of the experiments. Thus, we
confirm that the contribution of PV flux convergence associated with the high-frequency eddies
IS not significant to form the blocking event in this model.

On the other hand, eddy straining mechanism due to high-frequency eddies does work to
maintain the diffiuent flows after the onset of the blocking event. For example, the composite
projection of the time integrations from day O (dash-dotted line) remains larger than unity (the
horizontal line) asin Fig. 3.8. Moreover, the projection for the time integrations from day -5
(broken lines) and day -2.5 (dotted line) increases near day 0, and keeps alarge value around the
threshold for the definition of the blocking after the onset of the blocking event. Note that we use
the same value of the transient eddy forcing V - mL for these three kinds of integration from
diffluent initial conditions. Thus, we find that PV flux convergence due to transient eddies has
an important contribution to maintain the blocking state after the establishment of the diffluent

flow.

35



3.4.3 Formation of the blocking flow

As shown in the previous subsection, the eddy straining mechanism due to transient eddies
does not play an important role during the devel oping stage of the distinct diffiuent flows similar
to the blocking, while this mechanism is relevant for the maintenance of the diffluent flow
against dissipation. In this subsection, we will examine the formation process of the diffiuent
flows from the zonal, non-blocking state in detail. In particular, we pay our attention to the
interaction between low- and high-frequency transient motions.

First of al, we show the time evolution of the vorticity field during a non-blocking state for
day 845 - day 849, and the onset period of a blocking event for day 922.5 - day 926.5 for U=14
my/sinFig. 3.9aand Fig. 3.9b, respectively, to obtain an intuitive understanding for the blocking
formation in this model. The low-pass filtered streamfunction fields for day 922.5 - day 926.5
are aso shown in Fig. 3.10. During the non-blocking state (Fig. 3.9a), vortices associated
with high-frequency transients are advected eastward along the center of the channel (y=0) by
almost zonal “basic flow”. On the other hand, high-frequency eddies are gradually meandering
in the meridional direction before the onset (day 922.5 in Fig. 3.9b), and anticyclonic vortices
eventually move far northward, and stay near the northern wall around ax = /8 just before the
onset (day 924.5-day 926.5 in Fig. 3.9b). Then, adominant anticyclonic circulation is abruptly
built up, and the blocking state is established (day 926.5 in Fig. 3.10).

The contributions of low- and high-frequency eddies to the formation of the blocking event
could be examined quantitatively by using the following streamfunction tendency equation de-
composed into the low-pass filtered field - and the residual ¢’ = w — & (high-frequency
transients) as in Cash and L ee (2000):

WS Ay = (V2 36
ﬁ-;a— W=V (36)

where

b= VRGNV +py 2
&= V2, V)
b= VRNV 4 py )
&= VA, VH),

(3.7)
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which is obtained by applying the inverse Laplacian to Eq. (3.5), and low-frequency field is
obtained by using the same low-pass filter as in the previous subsection.

Thephysical interpretations of the &; termsare asfollows. The advection of the low-frequency
and the planetary vorticity by the low-frequency windisé&;. The advection of the high-frequency
vorticity by the low frequency wind is &, while &3 is the advection of the low-frequency and
planetary vorticity by the high-frequency wind. The vorticity flux divergence due to high-
frequency eddiesis represented by &,.

The contribution of each term & for the blocking event (day 926.5-day 945) of Fig. 3.9b is
shownin Fig. 3.11, which indicates the cumulative increment of the streamfunction due to each

term & from day 919.5 to day 929.5 (the onset of the blocking event is day 926.5), i.e.,
day 929.5
[ e 38)
d

ay 919.5
along with the differencefield of the streamfunction between day 919.5 and day 929.5 (¢ gayg20.5—

Ydayares). Day 919.5 (929.5) correspondsto 7 days before (3 days after) the onset of the block-
ing (day 0). In the difference field of the streamfunction (Fig. 3.11a), a dominant anticyclonic
circulation is seen in the northern half of the channel around the region of —7/8 < a < 0, con-
sistent with the buildup of the blocking high in this region. By comparing other four figuresin
Fig. 3.11 with Fig. 3.11a, we find that only Fig. 3.11c indicating the contribution of theterm &,
(advection of high-frequency vorticity by low-frequency wind) shows the anticyclonic circula-
tion around the blocking region asin Fig. 3.11a, while other terms do not have any contribution
to the onset of the blocking formation. Thus, these figures suggest the important contribution of
the term &, in the blocking formation. We also find that the £; term (Fig. 3.11b) corresponding
to the low-frequency contribution creates a confluent flow upstream of the blocking region. This
flow pattern in the upstream is also seen in the difference field of Fig. 3.11a

In order to further evaluate the contribution of each term &; in Eg. (3.6) to the blocking
formation, we cal culate the projection of the cumulative contribution of each term Li?ﬁ &dt +
Yday-7 ONto EOF1 of Fig. 3.3 for 11 blocking events (see Table 1). Figure 3.12 shows the
composite value of the projection for these events along with that of PC1 time series (solid
line)J From Fig. 3.11, we find that the dominant termisé, (Fig. 3.11c¢) and &3 (Fig. 3.11d), i.e.,
theinteraction between low- and high-frequency field, and they have almost the same magnitude

with the opposite sign before the onset of the blocking event. In the composite value, the sum
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of these terms (dotted line) abruptly increase after day -1. This abrupt increase is also seen
for PC1 time series. Thus, the blocking in this model is formed rapidly in time with the time-
scale of high-frequency eddies due to the interaction terms between low- and high-frequency
eddies. In particular, the contribution of the advection of the high-frequency vorticity by the
low-frequency wind &, is important for the formation since the term &, has the same sign as
PC1. We also denote that the contirbution of the high-frequency eddies (¢,4; dash-dotted line)
becomes gradually important after the establishment of the blocking, which has aready been
shown in the previous subsection.

Figure 3.13 aso shows that the contibution of low-frequency contribution £, gradually in-
creases before the onset of the blocking. Moreover, Fig. 3.12 aso indicates significant contri-
bution of the low-frequency variability to the formation of the confluent flow upstream of the
blocking region during the blocking formation. Thus, these facts suggest that the onset of the
blocking formation istriggerd by the low-frequency variation inthismodel. In order to examine
this possiblity, we show the time evolution of the composited streamfunction fields associated
with the low-frequency variation JL for 11 blocking events from day -5 to day O in Fig. 3.13.
In this onset period, the vortex dipole (cyclone/anticyclone in north/south) at ax = —2x/5 up-
stream of the blocking region is gradually enhanced. Thisis caused maily by theterm &, in Eq.
(3.9) asshown in Fig. 3.11b. In the just downstream region of this confluence, another vortex
pair (anticyclone/cyclone in north/south) corresponding to the blocking is gradually amplified
with a dightly downstream shift of the northern anticyclone. Thus, these figures suggest that
the buildup of the confluence upstream of the blocking region in the low-frequency variability
EL seems to be a precursor of the blocking formation.

In order to examine this hypothesis on the precursor of the blocking, we calculate the inner
product of the streamfunction field during the non-blocking states and that of the composited
low-frequency variation at each day in Fig. 3.13 for the rectangular region of —37/4 < ax <
0 and —n/2 < y < n/2. The non-blocking state is defined as periods except for the time
intervel from day -10 to the end of each blocking event. For each day in Fig. 3.13, we also
compute the innner product of the streamfunction at the corresponding day in each blocking
event and that of the composited value (closed ciecles in Fig. 3.14). If the inner products

at a day for each blocking event have significantly different values from those values during
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the non-blocking states, we could think that the composited low-frequency field at that day is
inherent to the blocking formation. Moreover, the low-frequency field of the first day after
which this separation between blocking and non-blocking states is distinct is the precursor for
the blocking formation. In Fig. 3.14, the variation of the inner product during non-blocking
statesis shown by the vertical lineswhich cover the two standard deviation from the mean value.
From thisfigure, we find that the separation between blocking and non-blocking states becomes
evident after day -4. Thus, this result a'so implies that the enhancement of the dipole structure
accompanying the confluent region upstream of the blocking in low-frequency variation might

be a precursor for the blocking formation.
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3.5 Concluding Remarks

The formation and the maintenance mechanisms of blocking flows were investigated using
a quasi-geostrophic barotropic g-channel model with an isolated topography. A periodic wave
forcing was included just downstream of the topography in order to represent the transient
synoptic eddies in this barotropic model. In particular, we paid attention to clarify the role of
eddy straining effect due to the deformation of transient eddies and that of the low-frequency
variation in the formation and the maintenance of the blocking flow.

We obtained stationary and periodic solutions in a wide parameter range of the zonally uni-
form flow U (10 m/s< U = 20 m/s) and the topographic height h (600 m < h < 1000 m)
to specify the basic flow in this model. These solutions, however, do not accompany distinct
diffluent flow. However, when the wave forcing is imposed on this basic flow, we find that
distinct diffluence fields similar to the blocking frequently occur for some parameter values.
Since the intrinsic lifetime of this distinct diffluent event is much longer than the period of the
imposed transient eddies (3.9 days), we apply a 10-day low-pass filter (Blackmon et al. 1986)
to the model output to extract the low-frequency variability including the blocking event in this
model. The EOF analysis to the 10-day low-pass filtered streamfunction reveals that the most
dominant variability for U = 14 m/sand h = 900 is closely related to the occurrence of the
distinct diffluent flow. Thus, we define the blocking event in this model by using the principal
component (PC1) associated with EOF1 for U = 14 m/sand h = 900 m. By using thisdefinition
we find that the total number and the total duration of blocking events for the parameter range
11 m/s< U £ 17 m/sshow aclear dependence on the zonally uniform flow: thereisno blocking
event for U >16 my/s. This might be connected with the resonance of the zonal wavenumber 4
component in this parameter range.

The effectiveness of the eddy straining mechanism for the formation of the blocking event in
thismodel is quantitatively evaluated by integrating the low-passfiltered vorticity equation, and
wefind that after the onset of the blocking event the diffluence flow associated with the blocking
is maintained by the low-pass filtered vorticity flux divergence associated with the imposed
high-frequency eddies. On the other hand, before the onset of the blocking, the contribution

of low-pass filtered vorticity flux divergence is too small to explain the enhancement of the
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blocking dipole. Thus, the eddy straining mechanism is not effective to establish the diffluence
associated with the blocking state.

Theimportance of the low-frequency variability in the formation of the blocking is confirmed
by decomposing the streamfunction tendency equation into low-frequency and high-frequency
contributions, and the interaction between low- and high-frequency eddies. The blocking event
inthismodel is built up on a synoptic time scale, and this abrupt establishment is caused by the
advection of the high-frequency vorticity due to low-frequency winds. Moreover, the blocking
formation seems to be caused by an irreversible mixing of PV due to the wave breaking as
mentioned by Nakamura et al. (1997).

The low-frequency variations might be important to trigger the blocking formation. In par-
ticular, we find that the enhancement of the confluent flow associated with the low-frequency
variation upstream of the blocking region could be a precursor of the blocking onset since the
confluenceis not sustained for the non-blocking state. However, the successive downstream de-
velopment from the confluence connected with the blocking formation is not simply explained
by the energy propagation of low-frequency eddies, since the development before the onset is
mainly due to the interaction between high- and low-frequency eddies.

Inasimilar barotropic model experiment, Shutts (1983) indicated the importance of the eddy
straining mechanism due to transient eddies in the formation of the diffluent flows as well as
their maintenance. However, our result on the blocking formation is apparently in contradiction
to Shutts (1983), in which blocking flows develop spontaneously only when the zona flow
satisfies the resonance condition for Rossby waves with dipole meridiona structure. Thus,
we think that the eddy straining mechanism becomes effective for the blocking formation only
under these restricted conditions, and is not so important for other more general conditions.

The formation mechanism of the blocking event in our study is the same as that of the block-
ing in the Atlantic sector in Nakamura et a. (1997) and the upstream blocking case in Cash
and Lee (2000). These studies denote the importance of the interaction between low- and high-
frequency eddies in the formation by applying a barotropic equation to the development of the
observational dataor AGCM output dataat one pressure level. However, there were large resid-
ua termsin their vorticity budgets, which obscure the obtained conclusion. Ignored processes

such as the thermodynamics in these studies might play role in the blocking formation. More-
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over, the“basic flow” hasto be maintained by artificial forcingsin their barotropic model, which
also critical to interpret the result. On the other hand, our analysis avoid these deficiencies and
isableto clearly show each contribution of the high- and low-frequency eddiesin the formation
and maintenance of the blocking flow.

For further studies, it is necessary to perform the similar experiments in a baroclinic model,
in which the artificia transient eddy forcing is not necessary, and the baroclinic waves spon-
taneously develop. The dependence of the effectiveness of the eddy straining mechanism on
the horizontal structure of the imposed eddies and the basic flows must be reexamined in the

baroclinic model.
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Chapter 4

General Conclusion

We made a series of numerical experiments by using a barotropic quasi-geostrophic S-
channel model to reexamine the efficiency of the eddy straining mechanism proposed by Shutts
(1983) and Haines and Marshall (1987) (hereafter referred to as HM) on the formation and the
maintenance of blocking flows. In this mechanism, synoptic-scale transient eddies propagating
from the upstream region of the diffluence would tend to reinforce the diffiuence of the block-
ing flow due to the potentia vorticity (PV) flux divergence associated with the deformed eddies
by the diffluence. However, the sensitivity of the effectiveness of this mechanism on the ba-
sic diffluent flows and the property of synoptic-scale transient eddies have not been elucidated.
The important role of low frequency variability on the formation of blocking events denoted by
recent observational studies (e.g., Nakamura et al. 1997) was also examined in detail in this
thesis by using the same model with an isolated topography which could force low-frequency
variationsin barotropic models (Jin and Ghil 1990).

In the first part of this thesis, the effectiveness of eddy straining mechanism was carefully
examined by using the same model asin HM except that the channel width was enlarged twice
to avoid the influence of channel walls to fluid motions. When we assume a vorticity forcing
associated with the analytical modon solution with Ekman friction in this model, two station-
ary solutions accompanying isolated structures in the uniform westerlies are obtained: one is
referred to as “blocking solution” closely resembling the modon solution; the other is referred
to as "zonal flow solution” characterized by dominant zonal flows. In order to examine the

dependence of eddy straining mechanism on the basic flows, we adopted each stationary solu-
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tion as a basic flow, and imposed transient eddies, which mimic the synoptic-scale waves, by a
wavemaker forcing located further upstream of the diffluence associated with basic flows. The
amplitude of transient eddies is also assumed to be small enough so that the interaction with
the basic flow could be described by a quasi-linear framework as in HM. The effectiveness of
the eddy straining mechanism is assessed by the resemblance between the basic flow and the
second-order flow induced by the time-averaged eddy PV flux divergence asin HM.

When the basic flow is prescribed by linearly stable blocking solutions, second-order flows
induced by eddies have quadruple structures, which tend to shift the blocking dipole down-
stream, instead of the dipole structure enforcing the blocking as shown in HM. However, the
time-averaged eddy PV flux divergence has amost the same pattern as in HM: north/south, di-
vergence/convergence dipole upstream of the diffluence of the basic flow. On the other hand,
second-order flows for the linearly stable zonal flow solutions have a tendency to enforce the
weak diffluence associated with the basic flow. The enhancement is not due to the resonant
property of the basic flow but depends on the property of imposed eddies. The second-order
induced flow for the blocking solution is drastically deformed by a negligible distortion of the
eddy PV flux divergence field due to a small change in the property of imposed eddies, such as
their horizontal scale and the meridional position of the trains of eddies relative to the diffluent
region.

These results obtained in the above quasi-linear framework were also confirmed in anonlin-
ear framework by examining the nonlinear evolution of the blocking solution without vorticity
forcing associated with the analytical modon: the amplitude of the blocking high diminish faster
when the transient eddy forcing are included in the model. Thus, the eddy straining mechanism
is not so effective to maintain the diffluence of blocking flows against surface friction, and its
effectivenessis aso very sensitive to the properties of migrating eddies as well as the assumed
basic flow.

In the second part of this thesis, the mechanism related to the formation and the maintenance
of blocking flows when there islow-frequency variability asin the real atmosphere was investi-
gated. The model used in this part was amost the same as in the first part except for the inclu-
sion of an isolated topography. A wavemaker forcing was also imposed at the trough region just
downstream of the topography. The surface topography forces planetary-scale quasi-stationary
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wavesin this model.

We obtained stationary and periodic solutionsin awide parameter range of the uniform zonal
flow speed U (10 mys< U < 20 mys) and the topographic height h (600 m < h < 1000 m) to
specify the basic flow in this model. Although these solutions do not have distinct diffiuent
flows, we could find frequently prominent diffluence fields similar to the blocking for some
parameter values when the wave forcing is imposed on these basic flows. Since the intrinsic
lifetime of this distinct diffluent event is much longer than the period of the imposed transient
eddies (3.9 days), we apply a 10-day low-pass filter (Blackmon et al. 1986) to the model
output to extract the low-frequency variability including blocking events in this model. The
EOF analysis to the 10-day low-pass filtered streamfunction reveals that the most dominant
variability for U = 14 mysand h = 900 m is closely related to the occurrence of the distinct
diffluent flow. Thus, we define the blocking event in this model when the projection of the
streamfunction filed to EOF1 for U = 14 m/sand h = 900 m becomes greater than a prescribed
threshold value. By using this definition we find that the total number and the total duration
of blocking events for the parameter range 11 m/s< U < 17 m/swith h = 900 m show a clear
dependence on the uniform zonal wind speed U: thereis no blocking event for U >16 my/s.

The effectiveness of eddy straining mechanism for the formation of the blocking event in
this model was quantitatively evaluated by integrating the low-pass filtered vorticity equation.
We found that the low-pass filtered transient eddy vorticity flux divergence corresponding to
the eddy straining mechanism is too small to set up the blocking dipole during the onset of the
blocking event. Thus, the eddy straining mechanism is not effective to establish the diffluence
associated with the blocking state. On the other hand, eddy straining mechanism plays a major
role to maintain the blocking event in the mature stage of the blocking event.

With the analysis on the streamfunction tendency during the onset of the blocking event by
decomposing it into low-frequency contribution, high-frequency contribution, and the interac-
tion between low- and high-frequency eddies, we found that low-frequency variability plays a
key role in the formation of the blocking. Moreover, the blocking event in thismodel is built up
inasynoptic time scale, and this abrupt establishment is caused by the advection of the vorticity
field associated with high-frequency variability dueto low-frequency winds. Thelow-frequency

variation might trigger the blocking formation. The enhancement of the confluent flow associ-
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ated with the low-frequency variation upstream of the blocking region could be a precursor of
the blocking onset since the confluence is not sustained for the non-blocking state. However,
the successive downstream development from the confluence connected with the blocking for-
mation is not simply explained by the energy propagation of low-frequency eddies since the
development before the onset is mainly due to the interaction between high- and low-frequency
eddies.

From this study, we could suggest that the discussion on the eddy straining mechanism by
adopting a stationary solution such as modon solution as the basic state may be inadequate.
As we noted, the slowly varying component during the blocking event may be essential to
understand the whole life cycle of the blocking event. Thus, we should pay our attention to the
transience of the blocking event.

The efficiency on the eddy straining mechanism for the maintenance of the blocking flow in
the real atmosphere has been insisted in observational studies (e.g., lllari 1984; Mullen 1987)
only by indicating the downgradient PV flux divergence structure upstream of the blocking flow
(IMari 1984), or the corresponding geopotential tendency field obtained with an inverse Lapla-
cian operator(Mullen 1987) based upon the result of Shutts(1983). However, the high sensitivity
of the second-order flow to a fine structure in the eddy PV flux divergence field in this study
suggests that these evidencesin the PV fields does not necessarily mean the enforcement of the
blocking flow by the synoptic eddies. We should compute the second-order induced flow dueto
the PV flux divergence based on azonally varying basic flow and discussthe similarity between
the induced flow and the basic flow to assess the efficiency of the eddy straining mechanism.

In this study, transient eddies are forced by a imposed wavemaker forcing since transient
eddies do not spontaneously develop in this barotropic model. Thus, we should examine the
efficiency of the eddy straining mechanism in abaroclinic model where transient eddies emerge
through the baroclinc instability. Moreover, since the activity and the horizontal scale of eddies
are determined in connection with the structure of the basic flow upstream of the blocking,
the enhancement of the jetstream, which might be a precursor of the blocking indicated in the
second part of this thesis, could activate the transient eddy in baroclinic models. This may in
turn enhance the possibility to set up the blocking onset through the interaction between low-

and high-frequency variability asindicated in thisthesis.
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Figure 2.1: Bifurcation diagram of steady solutions in the narrow channel model. The abscissa is the
Ekman friction coefficient A (day™!) and the ordinate is the kinetic energy of steady solutions normalized

by that of analytic modon solution of (2.12). The basic zonal flow is excluded in computing the kinetic

energy. Linearly stable solutions are denoted by asterisks and unstable solutions by solid circles.
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Figure 2.2: Streamfunction of the steady solutions ¢ at 4 = 0.13 day™! denoted by open circles in
Fig.1.1. Contour interval is 0.2. Negative values are contoured by dashed lines. (a) Blocking solution.
(b) Zonal flow solution.
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Figure 2.3: (a) Dependence of the growth rate of the most unstable mode for the blocking solution
on the Ekman friction coefficient 4. (b) The eigenvector of the most unstable mode for the analytical
modon solution (2.12). This is a stationary mode with the growth rate of 0.15 day ~!. Negative values are
contoured by dashed lines.
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Figure 2.4: Transient eddy forcing for the blocking basic flow in the narrow channel. Negative values
are contoured by dashed lines. Zero contours are omitted. {a) Instantaneous streamfunction field of
the disturbances ; at day 30 with the basic flow ¢ — Uy. Contour interval is 2.0x10™*. The shaded
rectangle denotes the eddy forcing region. (b) Time-averaged eddy PV flux divergence V - (v,¢;) during
45 days. Contour interval is 1.0x10 7>, (c) Second-order flow ¥ induced by the time-averaged eddy PV
flux divergence downstream of the solid vertical line in (b). Contour interval is 1.0x10 73,
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Figure 2.5: SVD analysis for the blocking solution in the narrow channel model. (a) Distribution of the
20 smallest singular value ;. (b) Streamfunction field for the first right singular vector £,. Contour
interval is 1.0 and negative values are contoured by dashed lines.
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Figure 2.6: As in Fig.1.1 but for the wide channel model.
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Figure 2.7: Streamfunction #¢ of steady solutions at 2 = 0.12 day =’ denoted by open circles in Fig. 1.6.

Contour interval is 0.1 and negative values are contoured by dashed lines. (a) Blocking solution. (b)
Zonal flow solution.
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Figure 2.8: As in Fig. 1.4 but for the blocking solution in the wide channel model. Only the half region
of the model, ~7/4 < y < #/4 is shown. Contour intervals for (a), (b), (c) are 2.0x1073, 2.0x107¢,
2.0x1078,
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Figure 2.9: As in Fig. 1.5 but for the blocking solution in the wide channel model. Contour interval for
(b)is 0.2.
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Figure 2.10: Projection £; of the eddy PV convergence f onto each right singular vector (£; - f)/o; with
the smallest 20 singular values o-; for the blocking solution in the wide channel.
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Figure 2.12

(a) instantaneous field

T / 4: e P e TR e | - A ~_~ -———_ﬂ-—-——i--‘~_l-——-—_4_—-——:
:;E;EEEEEEEH
> 0 ki sy \———r > g0——— ———_
0.20 .
0.40 .
—/4 B . — T
(b) PV flux divergence
Tr/4.' }— T T T T ‘7( N T L l T T T T Ii 1 T 1 T ]
Ly ;
> 0t // // 4
I ]
__.1"/4 [ L L L 1 | L L ! | ! Lt < { L L ) ) )
(c) second—order flow
/4 S e —— ]
> 0F -
N A R N B
-1 —-1m/2 0 w/2 il
ax

Figure 2.12: Same as in Fig. 1.8 except that the wavemaker is shifted to the south by 15% of the modon
radius rg. '
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Figure 2.13: Same as in Fig. 1.8 except that the zonal wavelength of the imposed eddies is 6,300km, and
the eddy streamfunction at day 29 is drawn in (a).
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Figure 2.14: Same as in Fig. 1.8 except that the wavelength of the eddies is 5,600km, and the eddy
streamfunction at day 28 is drawn in (a).
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Figure 2.15: Ensemble mean of PV field (a) with and (b) without the eddy forcing of the zonal wavelength
of 7000 km (shaded rectangular region). The upper panel, the middle panel and the lower panel denote

day0, day 2.5 and day 5, respectively. Contour intervals are 5.0 and negative values are contoured by
dashed lines. Zero contours are omitted.
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Figure 2.16: Time evolution of the maximum value of the PV with the transient eddy forcing of zonal
wavelength of 7000 km (asterisks), 6,300km (open circles), 5,600km (open squares) and without eddy
forcing (closed circles).
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Figure 2.17: Streamfunction tendency —V ~2J(i41, q1) obtained from the eddy PV flux divergence of Fig.
1.13b for (a) and of Fig. 1.14b for (b), respectively. Contour intervals are 1.0x10~8 and negative values
are contoured by dashed lines. Zero contours are omitted.
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Figure 3.1: (a) Bifurcation diagram of the steady solutions for #=900 m. The abscissa is zonally uniform
wind U and the ordinate is the amplitude of the wave component (m,n) = (1,4) of steady solutions.
Closed squares and closed circles are linearly stable stationary solutions, open squares are linearly unsta-
ble stationary solutions. The closed circles with vertical bars denote the stable periodic solutions whose
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open circles in (a)) of the unstable stationary solution for (b) and time-averaged field of the periodic
solution for (¢).
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Figure. 3.2: Instantaneous streamfunction field of (a) ¢ and (b) ¥ = ¢ — Uy at day 928 for /=900 m and
U=14 m/s. Contour intervals are 0.01 and negative values are contoured by dashed lines.
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Figure 3.3: Pattern of EOF1 for U=14 m/s, F=0.5 and h=900 m. Contour intervals are 0.01.
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Figure 3.4 Time series of PC1 scaled by its standard deviation (denoted by a horizontal line).



Figure 3.5
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Figure 3.5 Composite streamfunction field JL obtained by the time integration of Eq. (3.5) initialized
with the low-pass filtered streamfunction of day -5 (the upper panel). The middle panel and the lower
panel show 1// of day -2.5 and of day 0. Contour intervals are 0.01.




Figure 3.6

/2

Figure 3.6: Same as Fig. 2.5 but initialized with the streamfunction of day -2.5 (the upper panel) and the
lower panel shows JL of day 0.




Figure 3.7
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Figure 3.7: Low-pass filtered streamfunction field of day O (onset of the blocking event).
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Figure 3.8: Time evolution of the projectidn of composite i L onto EOF1. Solid line denotes the time
evolution of PC1. The projection for the time integration from day. -5, -2.5, 0 are depicted by broken line,
dotted line and dotted broken line, respectively. The variance of the projection at day 0 in each blocking
event are shown by vertical lines.
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Figure 3.9: Time evolution of the relative vorticity field V 2y during (a)non-blocking state of day 845-849,
(b) before the blocking onset of day 922.5-926.5. Only the half of region of the model, —7/2 < ax < 7/2
is shown. Contour intervals are 0.25 and negative values are contoured by dashed lines and shaded. Zero
contours are omitted.



Figure 3.10 .

Figure 3.10: Time evolution of the low-pass filtered streamfunction field ¢ " before the blocking onset of
day 922.5-926.5 (corresponding to Figure 3.9b). Only the half of region of the model, /2 < ax < /2
is shown. Contour intervals are 0.005 and negative values are contoured by dashed lines and shaded.
Zero contours are omitted.
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Figure 3.11: Difference of the streamfunction field evaluated by Eq. (3.8). The difference streamfunction
field Yaay929.5 — Wdayor9.5 is (a), and that due to &1, &2, &3 and &4 are shown in (b), (¢), (d) and (e),
respectively. Only the half of region of the model, —m/2 < ax < /2 is shown. Contour intervals are
0.02 and negative values are contoured by dashed lines and shaded. Zero contours are omitted.
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Figure 3.12: The time evolution of projection of 11 blocking composite of the cumulative contribution
of each term of Eq. (3.7) onto EOF1. The projection of contribution of &1, &, + &3 and xi, are depicted
by broken line, dotted line and dotted-broken line and that of PC1 is depicted by solid line.
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Figure 3.13: Time evolution of the composite low-pass filtered streamfunction ¢ " from day -5 to day O.
Contour intervals are 0.005 and negative values are contoured by dashed lines.
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Figure 3.14: Inner-product of the low-pass filtered streamfunction in each blocking event from day -7
to day 0 and that of the composite value (closed circle). The inner product of that during non-blocking
states are denoted by asterisks and its two standard deviation from the mean value is indicated by the
vertical line.




Table 1

U 11 12 13 14 15 16 17
nmumber 11 10 12 11 11 2 O
days 236 218 328 355 117 19 O

Table 1: Total number and days of blocking events during 2500 days for 11 m/s £ U £ 17 m/s.
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