修士論文

JRA-25再解析データに基づくHadley循環の長期変化に関する研究

京都大学大学院 理学研究科 地球物理学分野
正木 岳志

平成20年1月28日提出
要旨

Hadley循環の長期変化傾向（trend）について、これまでの研究では以下のことが報告されている。Hadley循環すなわち東西平均子午面循環の北半球冬季（12, 1, 2月; DJF）における北側のセルは強まる傾向があり、北半球夏季（6, 7, 8月; JJA）における南側のセルには明瞭なtrendが見られないとしている[Mitas and Clement (2005), Tanaka et al. (2004)]。DJFにおけるHadley循環の北側のセルの強化傾向は、再解析データにおける対流圏中層の誤ったcooling傾向による可能性があるとしている[Mitas and Clement (2006)]。また3月と9月の循環強化から、前者はDJFにおける北側のセルの持続、後者はJJAにおける南側のセルの持続であり、最近のHadley循環の季節進行に遅れが見られるとしている[Kobayashi and Maeda (2006)]。これまでの研究は、東西方向に平均したHadley循環についての解析であり、経度毎にみた局所Hadley循環との関係については明らかにされていない。さらにHadley循環の形状（緯度幅）の変化傾向については解析されていない。またMitas and Clement (2006)の主張によると、JJAにおける南側のセルに強化傾向が表れるはずであるが、先行研究ではJJAには明瞭なtrendはないと指摘しており、矛盾が生じている。そこで本研究ではJRA-25再解析データを用いて、Hadley循環と局所Hadley循環の強度や形状の経年変化を、冬季・夏季および冬（夏）季から春（秋）季の推移期に相当する3（9）月に注目して解析した。以下に結果を示す。

まず Hadley循環について解析したところ、DJFにおいて北側のセルに強化傾向が見られ、先行研究の結果と同様の結果となった。局所Hadley循環の解析からは、インド洋域西部太平洋域の上昇流強化と、インド洋域とITCZ北側の下降流強化がHadley循環の強化に寄与していることが明らかとなった。さらに上昇流強化域では、SSTの上昇と下層風の直交に伴う水蒸気フラックスの収束の増大傾向が上昇流強化に対応していることが分かった。Mitas and Clement (2006) が示した、DJFにおける対流圏中層のcooling傾向は見られなかった。

JJAにおける南側のセルは弱化しており、これは先行研究の結果と異なる。インド洋域と大西洋域において局所 Hadley循環は弱化しており、両領域では下層における水蒸気フラックスの発散の増大傾向と上昇流の弱化傾向が対応していた。気温の鉛直分布に関して一部の領域で対流圏中層のcooling傾向が示されたが、上昇流のtrendとは対応していなかっ

3月と9月におけるHadley循環を検討したところ、3月におけるHadley循環は強まる傾向にあり、9月では弱まる傾向が見られた。局所 Hadley循環の解析から、3月はインド洋域の子午面循環の上昇流強化が、9月は大西洋域の上昇流の弱まりがそれぞれのHadley循環の変化傾向に影響していた。また9月におけるHadley循環の上昇流の緯度幅の経年変化には、統計的に有意な拡大傾向が見られた。
目次

第1章 序論 1
 1.1 研究の背景 .. 1
 1.1.1 季節平均値における Hadley 循環の長期変化傾向 1
 1.1.2 3月・9月のHadley循環に見られる季節進行の遅れ 5
 1.2 研究の目的 .. 7

第2章 データと解析方法 8
 2.1 使用したデータ 8
 2.2 解析方法 10

第3章 解析結果と考察 11
 3.1 Hadley循環の年変化 11
 3.2 DJFにおける解析結果 13
 3.2.1 インド洋域における局所Hadley循環 18
 3.2.2 西部太平洋域における局所Hadley循環 22
 3.2.3 東部太平洋域における局所Hadley循環 26
 3.3 DJFの結果に対する考察 30
 3.4 JJAにおける解析結果 32
 3.4.1 インド洋域における局所 Hadley 循環 36
 3.4.2 大西洋域における局所 Hadley 循環 40
 3.5 JJAの結果に対する考察 44
 3.6 3月における解析結果 45
 3.6.1 インド洋域における局所 Hadley 循環 48
 3.6.2 西部太平洋域における局所 Hadley 循環 52
 3.7 3月の結果に対する考察 56
 3.8 9月における解析結果 57
 大西洋域における局所 Hadley 循環 60
 3.9 9月の結果に対する考察 64
 3.10 暖化時ににおける Hadley 循環の予測結果に関連した考察 65
目次

第4章 結論 68
謝辞 71

付録A 物理量の定義と解析方法 72
A.1 物理量の定義 72
 A.1.1 質量流線関数 72
 A.1.2 速度ポテンシャル 73
A.2 解析方法 .. 73
 A.2.1 Trend 解析 73
 A.2.2 相関解析 75
 A.2.3 EOF 解析 76

付録B 解析結果 78
B.1 DJF ... 79
 大西洋 ... 79
B.2 JJA ... 80
 B.2.1 西部太平洋 80
 B.2.2 東部太平洋 81
B.3 3月 ... 82
 B.3.1 大西洋 82
 B.3.2 東部太平洋 83
B.4 9月 ... 84
 B.4.1 インド洋 84
 B.4.2 西部太平洋 85
 B.4.3 東部太平洋 86

参考文献 87
第1章 序論

本章では本研究の背景と目的を述べる。研究の背景として、Hadley循環の季節平均場と推移期（3月と9月）における長期変化傾向に関する先行研究を紹介する。またそれらの先行研究から伺える問題点を指摘し、研究の目的を次節に記述する。

1.1 研究の背景

2007年に気候変動に関する政府間パネル（以下、IPCC1）における第4次評価報告書（以下、AR42）がまとめられた。IPCC(2007)によると、1795年以降（工業化以降）の大気中のCO₂（最も重要な人为起源の温室効果ガス）濃度は上昇しており、その原因は人間活動である可能性がかなり高い。CO₂濃度の上昇は大気や海洋の温度を上昇させ、その割合はCO₂の排出量が最も少ないB1シナリオ3で1.8度（1980年〜1999年を基準とした2090年〜2099年の差）である。温暖化は降水量や海氷、大気循環などの気候システムを時間的に空間的に大きく変動させる。大気循環の1つであるHadley循環は、南北温度勾配を解消させるように熱輸送を行う直接循環であり、この子午面循環の長期変化傾向を解析することは、熱帯や亜熱帯の気候を理解する上で重要となる。以下の節で、過去数十年間のHadley循環の変化傾向に関する過去の研究について記述する。

1.1.1 季節平均場におけるHadley循環の長期変化傾向

本研究では過去の研究に倣い、季節平均場に関して北半球冬（12月, 1月, 2月）で平均したものをDJF, 北半球夏（6月, 7月, 8月）で平均したものをJJAと呼ぶ。再解析データを用いた過去数十年間の季節平均場におけるHadley循環の長期変化傾向（以後、trend）に関する研究として、いくつかの研究が挙げられる。例えばMitas and Clement(2005)は、いくつかの再解析データセットを用いてHadley循環の循環強度の経年変化を解析した。彼らはOort and Yienger(1996)の定義4に従い、質量流線関数（以後、ψ）の経年変化を解析した結果、

1 Intergovernmental Panel on Climate Change
2 Fourth Assessment Report
3 2100年におけるCO₂濃度が600ppmになるシナリオ
4 第3章で示す。
DJFにおける北側の循環においてECMWFの再解析データ（ERA40）とNCEP/NCARの再解析データ（NCEP1）から統計的に有意な強化傾向が認められたと述べている（図1.1）.その強化傾向の割合はERA40で21.26 $\times 10^5$ kg/s/yr, NCEP1で7.47 $\times 10^5$ kg/s/yrである.また, JJAにおける南側のセルに統計的に有意なtrendは見られないと指摘している.

![Graph](image1.png)

![Graph](image2.png)

図1.2: DJFにおけるχ^2の最小値の経年変化.横軸は年, 縦軸は速度ポテンシャルの大きさ.単位: $10^5 m^2/s$. [Tanaka et al.(2004)]

彼らとは違う指標を用いてHadley循環のtrendを示した研究が, Tanaka et al.(2004)であ
1.1. 研究の背景

彼らは NCEP1 を用いて、Hadley 循環の循環強度の指標を東西平均した 200hPa 速度ポテンシャル (以後、\(\chi \)) の極値で定義し、その trend を解析した。図 1.2 は、彼らが示した DJF における \(\bar{\chi}_{200} \) は東西平均を表す。の最小値の経年変化で、その期間の北側のセルに明瞭な正の trend があると述べている。一方、JJA における南側のセルの循環強度の経年変化には明瞭な trend は見られないと指摘している。

北半球冬季における北側のセルの強化傾向は、Kobayashi and Maeda(2006) が示した図 1.3 の緯度・高度断面からも確認される。彼らも先述した 2 つの先行研究と同様に、北側のセルに明瞭な強化傾向があり、南側のセルには有意な trend がないと述べている。

これららの再解析デ・タを用いた過去数十年間の研究からは、DJF における北側の Hadley 循環に強化傾向が見られ、JJA における南側の Hadley 循環には明瞭な trend は見られないという一貫した見解が得られている。これらの研究は、東西方向に平均した Hadley 循環についての解析であり、経度毎の局所 Hadley 循環の詳細は明らかにされていない。

上記で示した DJF におけるの北側のセルの強化傾向に関して、Mitas and Clement(2006) は、モデルから得られた実験デ・タと再解析デ・タの間に違いが生じることを指摘している。彼らの指摘を以下に示す。

「図 1.4 は、DJF における \(\psi \) の最大値と安定度の trend のモデル実験結果と再解析デ・タ (NCEP1・ERA40) で比較した PDF である。ここで \(\psi \) の最大値は Hadley 循環の循環強度を示唆し、対称とした解析期間は 1979 年～2000 年である。DJF における Hadley 循環の循環強度に関して、モデルシミュレーションの結果の約 67% が弱化傾向か、ほとんど不変である。」

\(^7 \) Hadley 循環の上昇流域である 500hPa–850hPa、15°S–5°N で平均されたもの
のに対し，再解析デ－タには明瞭な強化傾向があることを確認した。その傾向は安定度の trend とも整合的である。これらのモデルと再解析デ－タの違いは，再解析データがラジオゾンデの気温観測計器によるエラ－やバイアスを含み，それらが誤った対流圈中層の cooling をもたらしている可能性がある（図 1.5）。

図 1.4: DJF においてモデル実験結果と再解析デ－タで比較された ψ の最大値と安定度の trend に対する PDF．左図：ψ の最大値の trend に対する PDF．横軸は trend，単位：10^4kg/s/decade，縦軸は割合，単位：％．右図：安定度の trend に対する．横軸是 trend，単位：10^9kg/s/decade，縦軸は左図と同じ．20C3M は 20 世紀再現実験を，AMIP は観測された SST と海氷のデ－タのみを結合したモデルを表す．再解析デ－タ，実験デ－タともに期間は 1979—2000 年である．[Mitas and Clement(2006)]

図 1.5: DJF における温位の trend の緯度 - 高度断面図．左図：NCEP1，右図：ERA40．両図とも 1979—2000 年の期間の trend である．陰影は信頼水準 90 ％の領域．[Mitas and Clement(2006)]
1.1. 研究の背景

上記に示した彼らの主張によると、JJAにおける南側のセルにも DJF ような強化傾向が表れるはずであるが、過去の研究では JJA に明確な trend は見られないとしており、矛盾が生じている。

1.1.2 3月・9月の Hadley 循環に見られる季節進行の遅れ

![Graphs showing Hadley circulation trends](image)

図 1.6: 上図：3 月と 9 月におけるψの気候値と trend。使用したデ - タ、コンタ - 間隔などは図 1.3 と同様。下図：3 月(7°N) と 9 月(7°N) におけるψ500 の経年変化。横軸は年、縦軸はψの大きさ、単位：10^{10} kg/s。破線は ERA40、丸丸つきの破線は NCEP1、黒丸つきの破線は NCEP2 を表す。[Kobayashi and Maeda(2006)]
図 1.7: 上図：各月におけるψ500の気候値（31日移動平均値）とtrendの時間 - 緯度断面図。細線は気候値（コンタ - 間隔：2 10^{10} kg/s）、太線はtrend（コンタ - 間隔：0.03 10^{10} kg/s）。陰影は信頼水準95％以上の領域。下図：各月におけるψ最大値の月変化の時間 - 緯度断面図。破線はψ気候値の最大値、実線はψ気候値の最大値に各々の月のtrendを10年分の足した値。実線上の太線はtrendの信頼水準が95％を越える期間。横軸の単位は10^{10} kg/s。[Kobayashi and Maeda(2006)]

彼らは図1.7上図からψ500の気候値が最大となる期間より2〜3週間遅い時期に有意な正のtrendが、また最小値より約1ヶ月遅い時期に有意な負のtrendがあることを指摘している。下図では、太線（気候値に10 trendを足した値）のpeakは2月初めにpeakをもつ一方で、気候値のpeakは1月の終わりにあることを示している。8月〜10月の間に顕著なshiftは見られないが、その期間における循環強化傾向を指摘している。また、彼らはMitas and Clement(2006)で指摘された再解析データにおける不良の可能性を考慮し、再解析データではないOLR(NOAA^8)と降水量(CMAP^9)のデータを用いて3月と9月に対するtrend解析を行った。その結果、再解析データで得られたphase shiftと矛盾しない結果であることが報告されている。

^8 National Oceanic and Atmospheric Administration
^9 CPC Merged Analysis of Precipitation
1.2 研究の目的

これまでの研究から、冬季・夏季、推移期（3月・9月）におけるHadley循環の過去数十年間の変化傾向が議論されているが、これらの研究は東西方向に平均したHadley循環についての解析であり、経度毎の子午面循環の詳細は明らかにされていない。経度毎の子午面循環についての研究はWang(2002)が挙げられるが、彼らはENSOとの関係に注目しており、季節平均場や推移期については議論していない。またMitas and Clement(2006)が指摘する再解析データに含まれる対流圈中層の誤ったcooling傾向に関しても1つの疑問点が挙げられる。その疑問点とは、彼らの主張が正しく対流圈中層のcooling傾向が観測計器の不備に因るものであれば、JJAにおける南側のセルの強化が表れるはずであるが、3例の先行研究ではその期間における循環強度の変化傾向に明瞭なtrendは見られないと結論しており、矛盾が生じることである。

よって本研究では、DJF, JJA, 3月, 9月における局所的なHadley循環のtrendに注目し、どの領域がHadley循環のtrendに寄与しているかを調べることを目的とする。また、過去の研究では循環強度についての議論はなされているが、Hadley循環の形状(緯度幅)に関する経年変化は示されていない。そこで本研究では上昇流域の緯度幅に着目し、総流量の変化傾向は上昇流域の緯度幅の変化によるものであるか、上昇流の強さによるものであるかを議論する。これらの解析にあたり、近年気象庁を中心に整備されたJRA-25再解析データを使用する。この再解析データは近年整備されたばかりであり、データの特性を明らかにすることは重要である。
第2章 データと解析方法

本章では、本研究で用いたデータセットと Hadley 循環の trend を解析する際に用いた解析方法について記載する。

2.1 使用したデータ

近年、異常気象や地球温暖化などの研究や全球的な気候系監視の必要性の増大に伴い、米国 (NCEP/NCAR；NCEP1, NCEP2 reanalysis data など) および欧州 (ECMWF；ERA15, ERA40 reanalysis data など) では長期再解析プロジェクトが実施されている。このような背景から日本の気象庁においても、高精度の気候・環境情報やデータの提供ニーズの増大に伴い、電力中央研究所との共同研究により十年以上の長期間における品質の一つのデータセットを作成することとなった。データセットを作成する際に行われるのが「再解析」という手法である。再解析とは、過去数十年間の衛星データ、高層データ、地上・海洋観測データなどを集め、最新のデータ同化システム1による計算を行い補正し、中長期のデータセットを作成する手法である。

本研究では上記に示した気象庁の JRA-25 長期再解析プロジェクトにおける JRA-25(Japanese Re-Analysis 25 years) 再解析データ (以下、JRA-25) と JCDAS 再解析データ2を使用した。解析した期間は、JRA-25 のデータを 1979 年 1 月から 2004 年 12 月まで、JCDAS のデータを 2005 年 1 月から 2006 年 12 月までとし、解析の際に用いた物理量を以下の表に示す。

水平解像度	1.25° × 1.25° (東西 288 grid × 南北 145 grid)
等圧面高度 (hPa)	1000, 925, 850, 700, 600, 500, 400, 300, 250, 200,
	150, 100, 70, 50, 30, 20, 10, 7, 5, 3, 2, 1, 0.4
物理量	東西風，南北風，ジオポテンシャル高度，
	比湿 (12 層)，鉛直 p 速度，気温
データの種類	月平均データ

1）JRA-25 では 3DVAR を T106L40 に合わせたものを使用している。
2）気象庁気候データ同化システム：JRA-25 と同じシステムを使い、現在気候の解析を行っている。
2.1. 使用したデータ

<table>
<thead>
<tr>
<th>物理量</th>
<th>OLR(Outgoing Longwave Radiation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水平解像度</td>
<td>2.5° × 2.5° (東西 144 grid × 南北 73 grid)</td>
</tr>
<tr>
<td>データの種類</td>
<td>月平均データ</td>
</tr>
</tbody>
</table>

（http://www.cdc.noaa.gov/cdc/data.interp_OLR.html から取得）

気象庁 JRA-25 再解析プロジェクトによると，2005 年 11 月中旬から 2006 年 1 月中旬の期間における SST の解析の際に不良ブイ観測データ（図 2.1）が同化され，0°N–15°N，120°E–160°E の領域に SST の低温バイアスが認められたと述べられており，この期間のデータを使用する際には注意が必要である。

2.2 解析方法

この節では本研究で用いた物理量の定義と解析方法を示す。まず質量流線関数 \(\psi \) は、Oort and Yienger (1996) の定義を用いて

\[
\psi = \frac{2\pi R \cos \phi}{g} \int_{p=0}^{p=p_0} [\vec{v}] dp \tag{2.2.1}
\]

と定義した。次に速度ポテンシャル \(\chi \) は Tanaka et al. (2004) に倣い、

\[
\chi = -\nabla^{-2} (\nabla \cdot \vec{V}) \tag{2.2.2}
\]

とした。これらの物理量の定義の詳細は付録 A に示す。

本研究では、Hadley 循環の trend を解析するために最小二乗法を用いた。また主要な変動成分を取り出すため主成分分析 (EOF 解析：Empirical Orthogonal Function) を行うが、その際、鉛直方向にはデータが等間隔ではないことを考慮して重みをかけた。さらにどの領域の局所子午面循環が Hadley 循環に影響を与えているかを議論するため、パターン相関解析を行いその相関係数を 1 つの指標として用いた。これらの解析方法の詳細についても付録 A に示す。
第3章 解析結果と考察

本章では、Hadley循環における循環強度のtrendと形状の経年変化、局所Hadley循環のtrendに関する解析結果を、DJF、JJA、3月、9月において示し、各々の期間における結果に対する考察を総括に記述する。まずHadley循環の年変化について結果を示す。

3.1 Hadley循環の年変化

図3.1にψと、東西平均した南北風とωを用いて表した子午面循環の各月の気候値を示す。ここで示す気候値は1979年〜2006年における各月の平均である。Hadley循環は12月、1月、2月に北半球で循環強度のpeakを持つ一方、6月、7月、8月に南半球でpeakとなる。北半球夏季におけるHadley循環は、約10°N付近に上昇流を持ち、対流圏上層を極向きに流れ、その後30°S〜10°S付近で下降し熱帯域に向かって戻る循環が明瞭に現れる。一方北半球冬季では、循環の向きが反転する。約10°S付近で暖められた空気塊は対流圏上層まで上昇し、対流圏上層を極向きに流れ、10°N〜30°N付近で冷やされて下降し、対流圏下層を熱帯域に流れる循環が卓越する。北半球のHadley循環は2月にψの最大値2.2×10^{11}kg/sとなり、南半球のHadley循環は8月にψの最小値−2.8×10^{11}kg/sとなることからもわかるように、南半球の循環のほうが北半球の循環よりも約27%強くなる。その他の月に関しては、赤道から5°N付近で上昇し両極に流れ、中緯度で下降するという循環が見られる。

本研究で解析されたψをOort and Yienger(1996)のrawinsondeデータから解析されたψの値と比較すると、北半球のψの値が最大となる2月において相対的にJRA-25の方が約4.5%小さく、南半球でψの値が最小値をとる7月において約33%小さいことがわかった。この違いについては南半球における観測点の希薄の問題が考えられる。また、NCEP/NCARreanalysisデータを用いてHadley循環のtrendを解析したKobayashi and Maeda(2006)のψの値と比較すると、2月において最大値はJRA-25の方が約30%大きく、7月において最小値は約33%小さく見積もりされた(第1章図1.3)。これは再解析プロジェクトにおけるモデル間の違いが示唆される。先述した2つの研究はψの値には違いが見られたが、極値を取りる緯度・高度に関しては整合的であった。
図 3.1: 左上から右下の順で、1 月から 12 月の \(\psi \) の気候値（単位：\(10^{10} \text{kg/s} \）の緯度 - 高度断面図を示す。トンネル間隔 1 で \(10^{10} \text{kg/s} \）コンタ - 間隔 3 で \(10^{10} \text{kg/s} \）赤：正の領域（反時計回りの循環）、青：負の領域（時計回りの循環）。ベクトルは東西平均した南北風と \(\omega \) の気候値を表し、単位ベクトルは m/s。なお、\(\omega \) は \(10^2 \) 倍して表記した。
3.2 DJFにおける解析結果

本節ではDJFにおける解析結果を記述する．図3.2左図にψと，東西平均した南北風とωを用いた子午面循環のDJFにおける気温値を示す．ここで気温値を1979年〜2006年におけるDJF, JJA平均場と定義する．右図にOort and Yienger(1996)の定義に従って求めたHadley Circulation Index（本研究では以後ψ-indexと呼ぶ）の経年変化を示した．彼らはHadley循環の強度を簡単な指標で表すため，DJFにおいて0°〜30°Nの領域でψの最大値を，JJAにおいて30°S〜0°の領域でψの最小値をその指標として定義している．

図3.2: DJFにおけるψと子午面循環の気温値と，ψ-index．左図：ψと子午面循環の気温値の緯度-高度断面図．等値線の間隔，単位，塗色，ベクトルは図3.1と同様．右図：ψ-indexの経年変化．横軸はψの最大値（単位：10^{10}kg/s），rc；回帰係数(Regresson Coefficient)．単位：kg/s/yr，（ ）は信頼水準．

DJFの子午面循環の気温値は，下層の15°S〜5°N付近で上昇し，対流圏界面で北極向きに流れ，15°N〜30°Nで下降し熱帯域に戻る循環が明瞭である．循環の中心付近のψの最大値は1.9 □ 10^{11}kg/sであった．本研究の結果と他のデータセットとの整合性を定量的に議論するため，Mitas and Clement(2005)の解析結果との比較したところ，ψの最大値においてJRA-25は相対的にNCEP1よりも約16％，NCEP2，ERA40，OORT1よりも約5％大きい値となった．ψが最大値をとる高度に関してはNCEP2，ERA40，OORTと整合的であるが，NCEP2(約850hPa)と比較するとJRA-25で解析されたHadley循環の中心はより上層にあることがわかった．彼らはNCEP2におけるHadley循環中心高度について，熱帯域の海

^{1}OORTのデータはOort and Yienger(1996)で使われたrawinsondeのデータである．
洋上のアルベドの違い（NCEP では〜0.15 であるのにに対し、NCEP では〜0.65）が主に面
風の鉛直分布に影響し、Hadley 循環の中心を下げると述べている。

次に右図のψ-index の経年変化を見ると、明瞭な正のtrendが示された。換言すると、2006
年のψ-index は 1979 年に比べて相対的に約 23 ％強くなっていることからもわかるよう
に、DJF において循環強度が 1.7 × 10^{9} kg/s/yr の割合で強化 trend を持つということであ
る。また、回帰係数の統計的有意性を示す信頼水準は 99 ％であった。この結果は Mitas and
の強化傾向と同様の結果となった。

して定義しており、その指標の定義に疑問が残る。そこで本研究では、EOF 解析を行い、主
要な変動成分として取り出された空間パターンの時係数の経年変化を解析した。図 3.3 に
ψ の気候値からの偏差に対する EOF 解析の結果を示す。左図の第 1 モードの空間バターン
における ψ は寄与率 40.8 ％で正の値を持ち、10°N, 650hPa 付近で最大値 5.5 × 10^{9} kg/s と
なる。時係数の経年変化は信頼水準 99 ％で正の trend を示しており、気候値はこの領域に
おいて正であることを考慮すると、先に述べた DJF における Hadley 循環の強化傾向と一致する。

図 3.3: DJF におけるψ 偏差場に対する第 1 モードと時係数 左図: ψ 偏差場に対する第 1 モードの空
間バターンの経度 - 高度断面図。ト-ン間隔 5 × 10^{9} kg/s, コンタ - 間隔 1 × 10^{9} kg/s。() は寄与
率を示す。塗色は図 3.1 と同様。右図: 標準偏差で規格化した第 1 モードの時係数の経年変化、rc ;
回帰係数、単位は/yr で（ ）は信頼水準を表す。
次に，Hadley循環の形状の経年変化について解析結果を示す．先に示すようにψの最大値，つまり子午面内の総流量は増加傾向にあることがわかった．しかしその傾向は，上昇流域の幅が広がる傾向にあるため増加するのか，上昇流の強さが強まるため総流量が増加するのかはわからない．そこで本研究では，Hadley循環の形状として主に500hPa上昇流域の緯度幅に着目する．図3.4は東西平均ωの気候値とω_{500}の緯度幅の経年変化である．左図より上昇流域は25°S-10°Nに広がり，ωの最小値は5°N付近で−3.8 × 10^{-2}Pa/sとなる．また，下降流域は40°S-25°Sと10°N-40°Nにあり，ω最大値は20°N付近で2.5 × 10^{-2}Pa/sである．本研究では，例えば左図に示された500hPaにおける上昇流域の緯度幅を求めるわけであるが，500hPa，30°S-30°Nにおけるω < 0の領域をその緯度幅として定義した．

図3.4: DJFにおける東西平均ωの気候値と500hPa上昇域の緯度幅の経年変化．左図：東西平均ωの気候値の緯度-高度断面図．トンネル間隔0.25 × 10^{-2}Pa/s，コンタ-間隔0.5 × 10^{-2}Pa/s．赤：上昇流域，青：下降流域を示す．右図：500hPa上昇流域の緯度幅の経年変化．単位；10^3 km．rcは回帰係数，単位はkm/yr，()は信頼水準を示す．

右図に各領域の面積の経年変化を示す．Hadley循環の上昇流域の緯度幅における1979年～2006年の平均は3.5 × 10^3 kmであった．その変化傾向に有意なtrendは見られなく，総流量が増加することを考慮すると，上昇流が強まる傾向にあることが示唆される．

次に，DJFにおける上昇流と下降流のtrendを議論する．
図 3.5: DJF における東西平均 \(\omega \) と南北風の気候値と trend. 左図: 東西平均 \(\omega \) の trend の緯度 - 高度断面図. 赤は負の trend, 青は正の trend を示す. 単位: 10^{-4} Pa/s/yr. 右図: 東西平均南北風の trend の緯度 - 高度断面図. 赤は負の trend, 青は正の trend を示す. 単位: 10^{-2} m/s/yr. 実線, 点線はそれぞれ信頼水準 90 % 以上, 95 % 以上の領域. ベクトルは図 3.2 と同様.

\(\psi \) の trend のみでは, DJF における循環強化傾向が上昇流の強化に因る強化傾向であるのか, 下降流の強化に因る傾向であるのかを議論することができない. そのため \(\omega \) と南北風の trend を解析した. 図 3.5 に東西平均した \(\omega \) と南北風の DJF における trend を示す. 左図において \(\omega \) の負の trend, つまり上昇流が強化傾向にある (\(\omega \propto w \)) 有意な領域が 5°N と 15°S–10°S に見られ, 最小値は -6.5 \(-10^{-4} Pa/s/yr \) であった. 一方で, 10°N–25°N の下降流域に \(\omega \) の正の trend, つまり下降流に強化傾向がある領域が見られ, その最大値は 3.3 \(-10^{-4} Pa/s/yr \) であることがわかった. 右図からは 10°N, 900hPa に負の trend である北風強化領域 (最小値 -2.0 \(-10^{-2} m/s/yr \)) と, 10°N, 200hPa で最大値 1.8 \(-10^{-2} m/s/yr \) を含む有意な正の trend の領域, つまり南風強化領域が見られた. 以上の結果から DJF における Hadley循環の強化が示唆され, これは先行研究や図 3.2, 図 3.3 で指摘された trend と整合的な結果となった.

これまでの結果から DJF における Hadley循環の強化が示唆されたが, 全球で東西平均すると経度毎の局所的な Hadley循環の振舞は明らかではない. そのため, 図 3.6 に示すような領域で東西平均を施し, どの領域の局所 Hadley循環が Hadley循環に影響を与えているのかを以下で議論する.
3.2 DJFにおける解析結果

まず図3.6に示したように各領域ごとに東西平均する経度を決める。本研究においてインド洋はKitoh et al.(1997)で定義された領域(40°E–110°E)を、西部太平洋(120°E–170°E)と東部太平洋(150°W–100°W)はWang(2002)で定義された領域とした。また残りの領域(80°W–20°E)を大西洋とした。本研究では、全球で東西平均した\(\omega\)のtrend分布(Hadley循環)と各領域で東西平均した\(\omega\)のtrend分布(局所Hadley循環)のパターン相関係数を基にして、特にHadley循環に寄与していると思われる領域の解析結果を示す。この章で示さないその他の領域の解析結果は付録Bに載せる。以下に示す領域の相関係数はすべて統計的に有意であった。また、局所Hadley循環の解析において\(\psi\)を使わない理由は、\(\psi\)を定義する際に質量保存則を使用しているため、各領域で東西平均した南北風を用いて\(\psi\)を求めると質量保存則を満たさなくなるためである。

図3.6: 東西平均した領域：http://www.freemap.jp/より引用
3.2.1 インド洋域における局所 Hadley 循環

インド洋域で東西平均した DJF における各物理量の trend と気候値を図 3.7 に示す．この領域の ω の trend 分布と全球東西平均の ω の trend 分布のパターン相関係数は 0.55 であり，他の領域と比較すると最も高い．

(a) はインド洋域における子午面循環の気候値と ω の trend を示す．インド洋域の DJF における局所 Hadley 循環は，15°S–0° で上昇し，対流圈界面付近で両極に向かって流れ，30°S と 20°N（こちらの下降流の方が相対的に 2−3 倍強い．）付近で下降し，熱帯域に戻る循環である．10°S–0° の上昇流域の ω と，15°N–20°N の下降流域の ω は有意な強化傾向にあり，上昇流域における trend の最小値は−1.6 × 10^{-3} Pa/s/yr で，下降流域は最大値 4.2 × 10^{-4} Pa/s/yr であった．上昇流域における trend の最小値に関しては，他の領域と比べて最小となる．

(b) は子午面循環の気候値との南北風の trend を示す．0°−15°N において上層（4.4 × 10^{-2} m/s/yr）と下層（−2.8 × 10^{-2} m/s/yr）の南北風に有意な強化傾向が見られる．(a),(b) からインド洋域の局所 Hadley 循環の強化が示唆される．

(c) に鉛直積算水蒸気フラックスの発散の気候値と trend を示す．10°S–3°S に見られる収束域（全球東西平均値よりも約 2.5 倍小さい）では，最小値 1.5 × 10^{-6} kg/s/yr となる有意な収束の増大傾向があり，これは(a) の ω の trend と対応している．また，気候値において鉛直積算水蒸気フラックスの収束が最大となる領域に比べ，収束の trend が最大となる領域が約 5° 北にずれていることから，収束が最大となる領域に北偏傾向があることがわたった．

この北偏傾向は(d) の降水量の気候値と trend からも示された．(c) の水蒸気フラックスの収束が最大となる領域と対応して，降水が最大（8.5 mm/day：全球東西平均値の約1.5 倍）となる領域で最大値 1.4 × 10^{-2} mm/day/yr となる有意な領域があり，(d) 同様に 5° 北にずれている．この北偏傾向は，後に示す χ_{850} の水平分布とも対応している．

(e) に各層における V·(qV)(水蒸気フラックスの発散) の trend の緯度 - 高度断面図を示した．上層の水蒸気は下層に比べると 10 %未満のため，500hPa から上層を表記していない．850hPa−1000hPa，10°S–0° に水蒸気フラックスの収束の増大傾向が最小 7.0 × 10^{-10} kg/s/yr となる有意な領域が見られ，これは(a) の ω の trend と対応している．つまり，下層における水蒸気フラックスの増大傾向に伴う上昇流強化が示唆される．また15°N–20°N の発散傾向（最大値 3.8 × 10^{-10} kg/s/yr）は，下降流の強化傾向領域と一致している．

気温の気候値と trend を(f) に示す．気候値は熱帯域で高温となり極に向かうにつれて低温となる，ほぼ南北軸対称の分布を示した． trend は 20°S–20°N のほぼ全層にわたり有意な正の trend が見られ，特に 150hPa，30°S–20°S や 600hPa，20°N 付近では，3.0 × 10^{-2} K/yr 以上の強い正の trend が確認された．
3.2. DJFにおける解析結果

図3.7: インド洋域で東西平均したDJFにおける各物量のtrendと気候値を示す。(a)ωの緯度-高度断面図。カラ-パ-の単位: 10^{-4} Pa/yr。赤: 負のtrend, 青: 正のtrend。(b)南北風の緯度-高度断面図。カラ-パ-の単位: 10^{-2} m/yr。(a)(b)におけるベクトルは図3.2と同様。赤: 負のtrend, 青: 正のtrend。(c)鉛直積算水蒸気フラックスの発散。右軸: 気候値に対する値, 単位: 10^{-5} kg/s。右軸: trendに対する値, 単位: 10^{-7} kg/s/yr。(d)降水量。右軸: 気候値に対する値, 単位: mm/day。(e) trendに対する値, 単位: 10^{-2} mm/day/yr。(f)気温の緯度-高度断面図。黒点線は気候値を示し, 単位はK。カラ-パ-の単位: 10^{-10} kg/s/yr。赤: 負のtrend(収束傾向), 青: 正のtrend(発散傾向)。
インド洋域における局所 Hadley 循環強化の誘因を考察するため、各物理量の水平分布の解析を試みた。図 3.8 に各物理量のインド洋域における緯度・経度断面図を示す。

(a) はインド洋域における SST の気候値と trend を示す。インド南部 15°S–5°N，60°E–95°E に最大値 2.5 × 10^{-2} K/yr の有意な正の trend が見られる。また，アラビア海 10°N–25°N，60°E–70°E にも最大値 2.8 × 10^{-2} K/yr の有意な正の trend が見られた。インド洋南部における SST の正の trend は，図 3.7(a) の上昇流が強化傾向にある領域と対応している。

(b) は OLR の気候値と trend である。気候値はスマトラ島付近で最小値 193.3 W/m^2 となり，trend はタイ南部で有意な領域 (最小値 -7.0 × 10^{-1} W/m^2/yr) となる。trend の有意な領域は狭いが，10°S–0° に負の trend が見られる。一方，正の trend の有意な領域 (最大値 1.2 W/m^2/yr) が 15°N 以北に見られ，下降流が強化される領域と一致する。

(c) に χ_{850} の気候値と trend を示した。気候値は 10°S，110°E 付近で最小値 -5.1 × 10^6 m^2/s，trend は 5°S，10°E 付近で最小値 -6.4 × 10^4 m^2/s/yr (有意) となる。気候値が最小値となる領域と trend が最小値となる領域が 5° のずれは，図 3.7(c)，(d) で示された北偏傾向と対応している。

(d) は 1000hPa における比湿の気候値と trend である。気候値は赤道域で相対的に高い値となり，trend はインド大陸で有意な領域 (最小値 -1.2 × 10^{-4} kg/kg/yr) となり，下降流強化領域と一致する。(d) で示した 1000hPa での比湿の trend は，対流圏下層の 925hPa，850hPa においても同様の傾向を示した(図略)。
3.2. DJFにおける解析結果

図3.8: DJFにおけるインド洋域での各物理量の気候値とtrendの緯度-経度断面図を示す。(a) SSTの緯度-経度断面図。コンタの単位: K, カラーバーの単位: 10^{-2} K/yr. 赤: 正のtrend, 青: 負のtrend. (b) OLRの緯度-経度断面図。コンタの単位: W/m^2, カラーバーの単位: 10^{-1} W/m^2/yr. 赤: 正のtrend, 青: 負のtrend. (c) Χ850の緯度-経度断面図。コンタの単位: 10^5 m^2/s, カラーバーの単位: 10^4 m^2/s/yr. ベクトルは発散風の気候値を示し、単位ベクトルは3m/s. 赤は正のtrend(収束傾向)，青は正のtrend(発散傾向)を示す. (d) 1000hPaにおける比湿の緯度-経度断面図。コンタの単位: 10^{-2} kg/kg, カラーバーの単位: 10^{-4} kg/kg/yr. 赤: 正のtrend, 青; 負のtrend. (a)〜(d)の実線、点線はそれぞれ信頼水準90％以上、95％以上の領域を、黒点線は気候値を示す.
3.2.2 西部太平洋域における局所 Hadley 循環

西部太平洋域で東西平均した DJF における各物理量の trend と気候値を図 3.9 に示す。この領域のパターン相関係数は 0.41 である。

(a) は西部太平洋域における子午面循環の気候値と \(\omega \) の trend を示す。西部太平洋域の DJF における局所 Hadley 循環は、20°S–10°N で上昇し、対流圈界面付近で概ね北極向きに流れ、20°N–35°N 付近で下降し、熱帯域に戻る循環である。これは Wang(2002) が示した 1 月の気候値（図略）と矛盾しない結果である。10°S–5°S の上昇流域の \(\omega \) に有意な強化傾向（最小値は \(-1.0 \times 10^{-3}\)Pa/s/yr）があり、下降流の trend は有意ではなかった。対流圏中層の 10°S–5°S における上昇流の気候値（\(\omega \) の最小値 \(-1.2 \times 10^{-1}\)Pa/s）は、他の領域と比較すると相対的にインド洋の約 2.4 倍、大西洋の約 12 倍、東部太平洋の約 6 倍（後で示すが、東部太平洋においてこの領域では下降流）であり、Hadley 循環の上昇流に大きく寄与していると考えられる。

(b) に子午面循環の気候値との南北風の trend を示す。対流圏上層の 10°S–5°N で有意な正の trend（最大値 \(6.8 \times 10^{-2} \) m/s/yr）が見られるが、下層には有意な領域はない。（a),(b) を考慮すると西部太平洋域における局所 Hadley 循環は、DJF で強まる傾向が示唆される。

(c) は鉛直積算水蒸気フラックスの発散の気候値と trend である。20°S–10°N に全球東西平均場を大幅に上回る収束域があり、西部太平洋域で最小となる 8°S 付近を比較すると、全球東西平均値の約 3.2 倍であった。また、同領域には負の trend の最小値 \(-1.1 \times 10^{-6}\)kg/s/yr となる有意な収束の増加傾向があり、これは（a）の \(\omega \) の有意な負の trend の領域と一致している。

(d) は降水量の気候値と trend である。上昇流域に対応して 20°S–10°N 付近に明瞭な降水域が見られ、8°S 付近では 10.8 mm/day となり、全球東西平均値と比較すると約 75 % 強い。trend には 15°S–0° あたりに有意な正の trend があり、1.4 \(\times 10^{-1}\)mm/day/yr の最大値（8°S）を持つ。降水の有意な領域は (a) や (c) よりも広範囲である。

各層における \(\nabla \cdot (qV) \) の trend を (e) に示す。図 3.7 同様に 500hPa より上層は表記しない。10°S–5°S に最小値 \(-7.0 \times 10^{-10}\) kg/s/yr となる有意な負の trend（水蒸気フラックスの収束の増大傾向）が見られ、これは (a),(c) とも対応している。

(f) に気温の気候値と trend を示す。気候値は熱帯域で気温が高く、極に向かうとともに降溫する南北対称な分布を示す。trend は 100hPa 付近の降温傾向を除けば、全層にわたり 1.0 \(\times 10^{-2}\) K/yr の昇温傾向であり、特に 10°S–10°N では有意な領域となる。
図 3.9: 西部太平洋域で東西平均した DJF における各物量の trend と気候値を示す。 (a)ωの緯度 - 高度断面図。 (b) 南北風の緯度 - 高度断面図。 (c) 鉛直積算水蒸気フラックスの発散。 (d) 降水量。 (e) V · (qV) の緯度 - 高度断面図。 (f) 気温の緯度 - 高度断面図。 (a)−(f) の塗色、コンター、単位などは図 3.7 と同様。
図 3.10 は各物理量の西部太平洋域における緯度 - 経度断面図である。

(a) は西部太平洋域における SST の気候値と trend を示す．気候値は 15°S–5°N, 135°E–170°E で SST の高い領域 (302K) となり、極に向かうにつれ温度が低くなることが示された．trend²はニューギニア島周辺 (12°S–3°N, 120°E–155°E) と 20°N–30°N, 120°E–150°E 付近に 2 10⁻²K/yr 以上の有意な trend があることがわかった．前者の正の trend と気候値から SST が最大となる領域が西へずれることが示唆された．またこの正の trend は図 3.9(a) の ω の trend とも対応する．

(b) は OLR の気候値と trend を示す．気候値において 200 W/m² 以下の値となる領域がニューギニア島上空に見られる．20°N–28°N, 135°E–155°E の 250〜270 W/m² の領域では、有意な正の trend が見られたが、熱帯域に有意な領域は見られなかった．

(c) に χ₈₅₀ の気候値と trend を示した．−6.0 10⁶m²/s 以下の収束が最大となる領域の西側 8°S–0° に、−5.4 10⁴m²/s/yr 以下の有意な負の trend(収束が増大する傾向) となる領域が存在することは、(a) の上昇流強化の領域と一致する．また、この領域が収束の最大となる領域の西側に存在するという結果は、SST の高い領域が西側への推移することと矛盾しない．

比温の気候値と trend を (d) に示す．10°S–10°N における熱帯域の海洋上では、1.7 10⁻²kg/kg 以上の周囲に比べて相対的に高い領域が確認された．(a),(c) において有意な領域である 10°S–0° 周辺に 0〜0.4 10⁻⁴kg/kg/yr の有意な正の trend が見られた．

第 2 章 1 節で述べたように 0°N–15°N, 120°E–160°E に SST 低温バイアスが認められるが、2004 年までの trend と 2006 年までの trend にはほとんど差がないため、気候値、trend ともに 1979 年〜2006 年の期間で計算した．
図 3.10: DJF における西部太平洋域での各物理量の気候値と trend の緯度 - 経度断面図を示す．(a) SST の緯度 - 経度断面図，(b) OLR の緯度 - 経度断面図，(c) χ850 の緯度 - 経度断面図，(d) 1000hPa における比溼の緯度 - 経度断面図．(a)→(d) の塗色，コンター，単位などは図 3.8 と同様．
3.2.3 東部太平洋域における局所 Hadley 循環

東部太平洋域で東西平均した DJF における各物理量の trend と気候値を図 3.9 に示す。この領域のパターン相関係数は 0.44 である。

(a) は東部太平洋域における子午面循環の気候値と ω の trend を示す。東部太平洋域では DJF に 2 つの局所 Hadley 循環が見られる。1 つは 5°N–10°N，つまり ITCZ(Intertropical Convergence Zone) で上昇し，300hPa 付近で北半球に向かって流れ，15°N–30°N 付近で下降し熱帯域に戻る循環である。これは Wang(2002) と矛盾しない結果である。もう 1 つは，ITCZ で上昇し圈界面付近で赤道向きに流れ，10°S–5°S で下降し赤道に戻る循環で，こちらの下降流の方が前者に比べて相対的に 5 % 程度高い。ITCZ における ω の trend は有意に負であり，最小値 -1.9 × 10^{-3}Pa/s/yr であった。また，北側のセルにおける 15°N–30°N の下降流で有意な正の trend があり，500hPa 付近で最大値 6.7 × 10^{-3}Pa/s/yr となる。つまり東部太平洋域における北側のセルは強化傾向にあると示唆される。

(b) に子午面循環の気候値との南北風の trend を示す。30°S–0°，200hPa–850hPa に有意な負の trend が見られ，上層や下層には有意な領域は見られない。

(c) は鉛直積算水蒸気フラックスの発散の気候値と trend である。20°S–0° において全球東西平均値では収束域であるのに対し，東部太平洋では発散域である。(a) 同様に全球で東西平均した場合，反対のセンスとして働く。5°N–8°N の収束域では，ITCZ 域の上昇流強化に対応して，有意な負の trend(最小値 -1.9 × 10^{-6}kg/s/yr) が見られる。また，15°N–19°N の発散域に有意な正の trend(最大値 5.0 × 10^{-7}kg/s/yr) があり，これは ITCZ 北側の下降流強化領域と一致する。

(d) に降水の気候値と trend を示す。ITCZ に全球平均値より約 70 % 強い明瞭な降水域が見られ，その領域における降水の trend は有意に正（最大値 2.3 × 10^{-1}mm/day/yr）である。20°N–31°N の領域に有意な降水量の減少傾向があり，ω の trend とは対応するが (c) に見られた有意な発散域とは 5° 程ずれる。

(e) に各層における V ∙ (qV) の trend を示す。下層の 5°N–10°N に有意な負の trend が見られ，これは上記に示した ITCZ 域の各物理量とも対応する。また，15°N–19°N の正の trend は (c) で見られた発散の増大傾向と，22°N–28°N の正の trend は (d) の降水量減少傾向に対応することが示唆され，(c) と (d) に見られた有意な領域のずれの要因と考えられる。

(f) に気温の気候値と trend を示す。気候値は熱帯域で気温が高く，極に向かうとともに降温する南北対称な分布を示す。20°S–5°S における trend は，700hPa 付近で有意な正の trend，900hPa 付近で有意な負の trend となるが，(a) や (d) とは対応しない。
図 3.11: 東部太平洋域で東西平均した DJF における各物量の trend と気候値を示す。(a)ω の緯度 - 高度断面図．(b) 南北風の緯度 - 高度断面図．(c) 鉱直積算水蒸気フラックスの発散．(d) 降水量．(e)\(\nabla \cdot (q \mathbf{V})\) の緯度 - 高度断面図．(f) 気温の緯度 - 高度断面図．(a)〜(f) の塗色，コンター，単位などは図 3.7 と同様．
図3.12は各物理量の東部太平洋域における緯度-経度断面図である。

(a)は東部太平洋域におけるSSTの気温値とtrendを示す。ITCZと20°S-0°，150°W-120°Wの300K以上となる領域において有意なtrendは見られず，20°S以南に有意な正のtrendが見られた。しかしこの領域では，SSTのtrend分布とωのtrend分布は対応していない。また10°N以北に有意な領域は狭いが負のtrendが見られる。

(b)はOLRの気温値とtrendである。ITCZ域のOLRは240〜250 W/m²で，その両側(15°S-0°，10°N-25°N)では260〜270 W/m²となり，これは下降流に対応していると考えられる。trendにおいて有意な領域はなく，図3.11(a)に見られたITCZの強化とその北側の下降流の強化傾向は表していない。

(c)にχ925の気温値とtrendを示す。850hPaのχを解析した場合，ITCZ域の収束が明確に現れなかったため，925hPaにおける値を使用した。ITCZに明確な収束域が見られるが，有意な収束の増大傾向は確認されなかった。ITCZ北側の発散域では，8°N-30°N，115°W-100°Wに5.0 × 10^4 m²/s/yr以上の発散が増大する傾向にある領域が見られ，これは図3.11(a)に見られたITCZの北側の下降流の強化傾向と対応している。

(d)に比湿の気温値とtrendを示す。気温値は0°-10°Nで1.6 × 10⁻² kg/kg以上の相対的に高い領域が広がる。trendは南半球では広範囲に-0.2 × 10⁻⁴ kg/kg/yr以下の有意な負のtrendの領域が広がり，北半球では15°N-30°Nで負のtrendとなる。北半球における負のtrendは，図3.11(d)に見られる降水量の減少傾向と対応している。
図 3.12: DJF における東部太平洋域での各物理量の気候価と trend の緯度 - 経度断面図を示す。（a）SST の緯度 - 経度断面図。（b）OLR の緯度 - 経度断面図。（c）χ925 の緯度 - 経度断面図。（d）1000hPa における比湿の緯度 - 経度断面図。（a）〜（d）の塗色、コンター、単位などは図 3.8 と同様。
3.3 DJF の結果に対する考察

DJF における Hadley 循環の強化は、インド洋、西部太平洋、東部太平洋における局所 Hadley 循環強化の寄与が考えられる。以下に各々の領域における結果についての考察を述べる。

インド洋

インド洋域における局所 Hadley 循環の強化は、下層の水蒸気フラックスの収束（発散）の増大に伴う上昇流（下降流）強化が示唆される。また、水平分布から示された SST の正の trend と Χ850 の収束増大領域が、上昇流強化領域と一致していることから、以下のことが考察される。

SST の上昇に伴い上昇流強化、下層風の収束強化が起きる。それらに因り下層における水蒸気フラックスの収束が増大傾向となり、その収束に伴い上昇流強化がもたらされる。インド洋域において、上昇流強化領域での湿気の trend はほとんど変化が減少傾向となっており、下層風収束の増大による水蒸気フラックスの収束の増大傾向が局所 Hadley 循環の強化に影響していると考えられる。一方下降流が強化している領域（15°N–20°N）では、陸地が多くなるため SST だけでは判断できない。その領域における風の収束発散場に有意な trend は見られないが、インド大陸上に相対的に強い湿気の負の trend が見られ、水蒸気フラックスの発散の増大傾向に寄与していると考えられる。これらの傾向は OLR の trend とも対応しており、インド洋域の局所 Hadley 循環の強化に関してデ－タ依存性は弱いであろう。また、降水の正の trend における北偏傾向であるが、下層の収束強化領域の北偏に伴う上昇流域の北偏と対応していることが示された。

気温の鉛直分布に関して、Mitas and Clement(2006) が指摘する対流圈中層の cooling 傾向は見られなかった。また上昇流の trend とは対応していなかった。

西部太平洋

西部太平洋域における局所 Hadley 循環の強化は、上昇流強化領域と水蒸気フラックスの収束が増大する領域が一致することから、インド洋と同様の考察から上昇流強化が説明できる。水平分布からは、SST の正の trend と Χ850 の収束増大傾向の位置、湿気の正の trend が上昇流強化領域と一致していることが示された。つまり SST の昇温傾向に伴う上昇流強化と下層風の収束強化が起きて、またその領域における湿気の trend は正なので、収束の強化と水蒸気の正の trend の両方が水蒸気フラックスの収束の増大傾向に寄与していると考えられる。しかし OLR との整合性は希薄なため、西部太平洋域における循環強化は JRA-25 の特性である可能性が捨て切れないのである。

気温の鉛直分布において、対流圈中層の cooling 傾向は見られなかった。
東部太平洋

ITCZ 北側の下降流の強化についての考察は、下降流強化領域と水蒸気フラックスの発散傾向の領域の一致と関連づけられる。水平分布から、有意な領域は狭いが SST の負の trend と χ_{850} の発散傾向、比湿の負の trend が対応していることが示された。よって SST の降溫傾向による下降流強化、下層風の発散強化が起き、またその領域で比湿の trend は負であることを考慮すると、発散の強化と水蒸気の負の trend が下降流強化に対応していると考えられる。しかし OLR の解析から ω の分布に対応する有意な trend は見られなかった。ITCZ の強化については本研究の解析だけでは考察することが難しい。

気温の trend の鉛直分布では、対流圏において数値の正と負の trend が局在するため対流圏中層の cooling 傾向があるとは言い難い。
3.4 JJAにおける解析結果

この節ではJJAにおける解析結果を述べる。図3.13にJJAにおけるψと子午面循環の気候値とψ-indexの経年変化を示す。JJAにおけるψ-indexの定義は、3.1章で述べた通りである。

図3.13: JJAにおけるψと子午面循環の気候値とψ-index。左図:ψと子午面循環の気候値の緯度-高度断面図。右図:ψ-indexの経年変化。単位、ベクトル、塗色などは、図3.2と同様。

JJAでは、5°N-20°Nで上昇し、対流圏界面付近を赤道に向かって流れ、35°S-15°Sで下降し赤道域に戻るという子午面循環が卓越する。ψの気候値は、中心付近で最小値−2.7×10^{11} kg/sとなり、DJFのψの大きさと比べると約42％大きい。先行研究ではJJAの気候値におけるψの値について定量的に述べられていないため、整合性を議論することはできない。右図のψ-indexの経年変化を見ると1.6×10^5 kg/s/yrの有意な正のtrendが示唆される。JJAにおけるψの気候値は負なので、Hadley循環は弱まる傾向であることがわかる。この結果は、先行研究で述べられているJJAにおけるHadley循環の循環強度が不明瞭であることと異なる結果となった。全期間におけるtrendは統計的に有意な正のtrendであるが、1998年以降に着目すると強化傾向があるように見え、この期間についてさらに議論する必要がある。しかし本研究では全期間におけるtrendを基に議論を進める。
図 3.14: JJA におけるψ偏差場に対する第 1 モードの空間パターーンの緯度 - 高度断面図を示す。単位、塗色などは図 3.3 と同様。

その様子は、JJA のψ偏差場に対するEOF解析結果である図 3.14からも示された。左図より第 1 モード(寄与率 61.3 %)において負の偏差が 10°S–20°N に見られ、中心付近の最小値は −7.9 × 10^3kg/s であった。気候値はこの領域で負の値となるため、時係数の符号を考慮すると Hadley循環に有意な弱化傾向が示唆される。また、1998年以降におけるtrend がそれ以前のtrendと逆のセンスになることは、図 3.13 のψ-indexの経年変化と矛盾しない結果であるが、先述したように本研究では全期間におけるtrendを基に議論を進める。

次に東西平均ωの気候値と500hPaにおける上昇流の緯度幅の経年変化を示す。図 3.15左図から上昇流が最大となる領域が 5°N–10°N に見られ、ωの最小値 −6.9 × 10^{-2}Pa/s はDJF の約 1.5 倍であった。下降流が最大となる領域は 25°S–15°S にあり、ωの最大値 3.2 × 10^{-2} Pa/s は DJF の約 1.2 倍であることがわかった。
図 3.15: JJA における東西平均 \(\omega \) の気候値と 500hPa 上昇域の緯度幅の経年変化。単位、塗色などは図 3.4 と同様。

500hPa 上昇流域の緯度幅の平均は 2.9 \(\times 10^3 \text{km} \) であり、DJF と比較すると JJA における
上昇流域の緯度幅は 19 %狭い。その領域の trend に関して、有意な trend はないことが右図
からわかる。つまり総流量は減少する傾向にあるが上昇流域の緯度幅は変わらないことか
ら、上昇流弱化が伺える。

次に JJA における上昇流と下降流の強さの trend について結果を示す。

図 3.16: JJA における東西平均 \(\omega \) と南北風の気候値と trend。左図：東西平均 \(\omega \) の trend の緯度 - 高
度断面図。右図：東西平均南北風の trend の緯度 - 高度断面図。単位、塗色は図 3.5 と同様。
3.4. JJAにおける解析結果

JJAにおける東西平均したωと南北風のtrendを図3.16に示す。10°N–20°Nの上昇流域に有意なωの正のtrendが見られ、15°S–5°Sの下降流域にω有意な負のtrendが左図から確認された。また、上昇流域の正のtrendの最大値は6.6 × 10⁻⁴Pa/s/yrで、下降流域の負のtrendの最小値は−3.7 × 10⁻⁴Pa/s/yrであった。一方右図から200hPa–300hPa付近の北風に有意な正のtrend（最大値3.6 × 10⁻²m/s/yr）が見られることから、JJAにおけるHadley循環に弱化傾向が示唆される。これらの結果は、図3.13、図3.14で示したtrendと整合的な結果となった。
3.4.1 インド洋域における局所 Hadley循環

JJAにおける Hadley循環の弱化を考察するため、インド洋域で東西平均したJJAにおける各物理量のtrendと気候値を図3.17に示す。この領域で東西平均したωのtrend分布と図3.16とのパターン相関係数は0.74であった。

(a) はインド洋域における子午面循環の気候値とωのtrendを示す。インド洋域のJJAにおける局所 Hadley循環は、10°N–30°Nで上昇し、対流圈界面付近で赤道に向かって流れ、30°S–10°S付近で下降し、熱帯域に戻る循環である。10°N–20°N付近の上昇流域のω有意な正のtrendが、その南側に有意な負のtrendが見られ、上昇流域におけるtrendの最大値は1.4 × 10⁻³Pa/s/yr（他の領域と比べても最小となる）で、その南側におけるtrendの最小値は−1.7 × 10⁻³Pa/s/yrであった。これらのことから、インド洋局所 Hadley循環の上昇流域の弱化傾向と南偏傾向による循環弱化が伺える。

(b) は子午面循環の気候値と南北風のtrendを示す。0°–15°Nにおいて、200hPa–300hPa付近の北風に有意な正のtrend（最大値1.1 × 10⁻ⁱm/s/yr）と、700hPa–1000hPaの南風に有意な負のtrend（最小値−6.7 × 10⁻²m/s/yr）が見られることから、(a)同様に局所 Hadley循環の循環強化が示唆される。

鉛直積算水蒸気フラックスの発散の気候値とtrendを(c)に示す。3°Nを境に収束域と発散域に分かれる。8°N–18°Nの収束領域（最小値−8.0 × 10⁻⁵kg/s）では、1.0 × 10⁻⁵kg/s/yr以上の有意な正のtrendが見られた。またその南側には−1.0 × 10⁻⁵kg/s/yr以下の有意な負のtrendがあり、これらは(a)のωのtrendと対応している。

(d) は降水量の気候値とtrendを示す。降水量が最大となる領域8°N–18°Nにおいて有意な負のtrendがあり、その最小値は−1.2 × 10⁻¹mm/day/yrである。(a),(c)と対応して15°S–5°Nに1.0 × 10⁻¹mm/day/yr以上の有意な正のtrendが広がる。

(e) は各層における∇⋅(qV)のtrendである。10°N–20°N、700hPa–1000hPaに有意な正のtrend（最大値1.1 × 10⁻⁹kg/s/yr）が、10°S–0°、700hPa–1000hPaに有意な負のtrend（最小値−5.2 × 10⁻¹kg/s/yr）が見られた。これらは(a)のωのtrendが有意な領域とほぼ一致している。

(f) は気温の気候値とtrendである。気候値は北半球の方が南北温度勾配は緩やかである。trendは、150hPaより上層で有意に負のtrendがほぼ全域に渡って見られる。また、25°S–10°S、600hPa–800hPaに最大値3.4 × 10⁻²K/yrとなる有意な正のtrendがあるが、これら他の物理量と対応しない。
図 3.17: インド洋域で東西平均した JJA における各物量の trend と気候値を示す。 (a) ω の緯度 - 高度断面図。 (b) 南北風の緯度 - 高度断面図。 (c) 鉛直積算水蒸気フラックスの発散。 (d) 降水量。 (e) V・(qV) の緯度 - 高度断面図。 (f) 気温の緯度 - 高度断面図。 (a)〜(f) における単位、折線、塗色などはそれぞれ図 3.7 の (a)〜(f) と同様。
インド洋域での局所 Hadley 循環の弱化を考察するため、図 3.18 に各物理量のインド洋域における緯度 - 経度断面図を示す。

(a) はインド洋域における SST の気候値と trend を示す。気候値は、インド南部 5°S–5°N, 60°E–100°E 付近で 302K 以上となる SST の最大領域が確認された。trend は、気候値が最大となる領域から約 5°ほど南にずれた 15°S–5°N, 60°E–100°E に有意な正の trend が見られる。trend の最大値の 3.1 × 10^-2 K/yr は、DJF に比べて約 24 %大きい。この正の trend は、図 3.17(a),(c) などで示された南偏傾向に対応していると考えられる。

(b) は OLR の気候値と trend を示す。タイ西部で 200 W/m^2 以下となり、これはインド洋域で OLR が最小の領域である。その領域における trend に有意性はなく、0°–5°N, 55°E–65°E に有意な負の trend が見られた。

(c) に χ850 の気候値と trend を示した。気候値は 20°N, 90°E–110°E 付近でインド洋最小となり、その値は −8.0 × 10^6 m^2/s 以下となる。trend は 20°S–10°N に有意な負の trend (最小値 −7.3 × 10^4 m^2/s/yr) が見られ、SST の正の trend の領域とほぼ一致する。

(d) は 1000hPa における比湿の気候値と trend である。インド大陸西部沿岸と東部沿岸で 1.8 × 10^-4 kg/kg 以上となる領域があり、インド洋域では最大となる。trend はインド大陸上と赤海西部、10°S 以南で −0.2 × 10^-4 kg/kg/yr 以下の有意な負の trend を持つ、アラビア海北西部で 0.4 × 10^-4 kg/kg/yr 以上の有意な正の trend となる。
図 3.18: JJA におけるインド洋域での各物理量の気候値と trend の綫度 - 経度断面図を示す。(a) SST の綫度 - 経度断面図、(b) OLR の綫度 - 経度断面図、(c) χ_{850} の綫度 - 経度断面図、(d) 1000hPa における比湿の綫度 - 経度断面図。(a)〜(d) の塗色、コンター、単位などは図 3.8 と同様。
3.4.2 大西洋域における局所 Hadley 循環

大西洋域で東西平均した JJA における各物理量の trend と気候変を図 3.19 に示す。この領域のパラメータ相関係数は 0.80 であり、他の領域に比べて最も高い。

(a) は大西洋域における子午面循環の気候値と ω の trend を示す。大西洋域の JJA における局所 Hadley 循環では、5°N–13°N で上昇し、200hPa–300hPa 付近で南北に向かって流れ、35°S–10°S 付近と 20°N–30°N で下降し、熱帯域に戻る循環である。2 つのセルの下降流の強さは、前者の領域で下降するセルの方が相対的に 2～3 倍強く、南側のセルが明瞭に現れる。また、JJA の Hadley 循環は南半球で卓越することを考慮し、本研究では大西洋域における局所 Hadley 循環として南側のセルに焦点をあてる。trend に関して、200hPa–700hPa, 10°N–15°N 付近の ω に有意な正の trend(最大値 1.1 × 10^{-3} Pa/s/yr) が見られ、これはインド洋の次に大きい値であることが示された。500hPa 付近、15°S–10°S の下降流には -2.0 × 10^{-4} Pa/s/yr 以下の有意な負の trend が確認された。また 30°S–25°S 付近に有意な正の trend が見られた。

(b) は子午面循環の気候値と南北風の trend を示す。10°S–10°N における上層の北風域に最大値 4.0 × 10^{-2} m/s/yr となる有意な正の trend があり、(a),(b) から大西洋局所 Hadley 循環の弱化が伺える。

鉛直積算水蒸気フラックスの発散の気候値と trend を (c) に示す。気候値は 2°N–11°N で収束域となり、収束の強さは全球東西平均値とほぼ同じ大きさであり、その両側は発散域となる。10°N 付近の収束領域で有意な発散増大傾向が見られ、その最大値は 6.6 × 10^{-7} kg/s である。この領域は上昇流弱化領域と一致する。

(d) に降水量の気候値と trend を示す。降水量は 5°N 付近で peak となり、その領域では有意に正の trend となる。約 5° 北側の領域では、最小値 -7.3 × 10^{-2} mm/day/yr の減少傾向なる有意な領域が広がる。

(e) は各層における ∇ · (qV) の trend である。600hPa–850hPa, 10°N–15°N 付近に 2.0 × 10^{-10} kg/s/yr 以上の有意な正の trend が見られ、ω で選出の trend がある領域と一致する。

(f) は気温の気候値と trend である。気候値は対流圈中層付近まで北半球の方が南半球に比べて高い。150hPa より上層にはほぼ全域にわたり有意な負の trend が広がり、下層の 5°N–20°N では著明な正の trend (最大値 6.0 × 10^{-2} K/yr) が見られた。
図 3.19: 大西洋域で東西平均した JJA における各物量の trend と気候値を示す．(a)ω の緯度 - 高度断面図．(b) 季節風の緯度 - 高度断面図．(c) 鉛直積算水蒸気フラックスの発散．(d) 降水量．(e)V·(qV) の緯度 - 高度断面図．(f) 気温の緯度 - 高度断面図．(a)〜(f) における単位，折線，塗色などはそれぞれ図 3.7 の (a)〜(f) と同様．
図 3.20 は各物理量の大西洋域における緯度 - 経度断面図である。

(a) は大西洋域における SST の気候値と trend を示す。カナリア諸島周辺とギニア湾に 3.0 $\times 10^{-2}$K/yr 以上の有意な正の trend が見られるが、ω の trend とは対応していない。

(b) は OLR の気候値と trend を示す。10°N–15°N において、気候値は 240 W/m2 以下となる。同緯度の 40°W–20°E で -3.0×10^{-1}W/m2/yr の有意な負の trend が見られる。また、20°S–10°S の大陸上に有意な正の trend が確認された。これら OLR の trend は ω の trend とは逆のセンスである。

(c) に χ_{850} の気候値と trend を示した。気候値は中部大西洋で最大となり、7.0 $\times 10^6$m/s 以上の発散領域が広がる。trend は、アンデス山脈からチリ沖に広がる領域とサハラ砂漠周辺に有意な負の trend がある。後者の領域において、気候値が収束域であることを考慮すると収束の減少傾向が示唆される。

1000hPa における比湿の気候値と trend を (d) に示す。有意な負の trend が、サハラ砂漠 (最小値 1.9×10^{-4}kg/kg/yr) とブラジル高原 (最小値 -3.8×10^{-4}kg/kg/yr : 全球で最小である) に見られる。一方有意な正の trend は、アンデス山脈北部 (最大値 2.5×10^{-4}kg/kg/yr : 全球で最大である) と南部アフリカ大陸 (最大値 1.4×10^{-4}kg/kg/yr) に広がる。
図 3.20: JJA における大西洋での各物理量の気候値と trend の緯度 - 経度断面図を示す．(a) SST の緯度 - 経度断面図．(b) OLR の緯度 - 経度断面図．(c) χ_{850} の緯度 - 経度断面図．(d) 1000hPa における比湿の緯度 - 経度断面図．(a)〜(d) の塗色，コンター，単位などは図 3.18 と同様．
3.5 JJAの結果に対する考察

JJAにおけるHadley循環の弱化は、インド洋と大西洋の局所Hadley循環の弱化傾向が寄与していると考えられる。以下で両領域における結果について考察する。

インド洋

水平分布の解析から、上昇流域の南偏と高SST域の南偏、風の収束場の南偏が対応していることが示された。つまりSSTが最大となる領域が南偏することと、それに伴う上昇流域と下層の収束領域の南偏、加えてインド大陸での水蒸気の減少傾向から、下層における水蒸気フラックスの発散が増加傾向となり、それに対応して上昇流は弱まると考えられる。しかしOLRのtrendとは対応していない。

気温のtrendの鉛直分布に関して、赤道上や10°N付近の対流圈中層に有意な負のtrendが見られた。これは第1章で指摘したJJAにおける対流圈中層のcooling傾向が考えられ、循環は強化傾向でなくてはならないが、気温と鉛直流のtrendは対応していなかった。

大西洋

大西洋域における局所Hadley循環の弱化は、600hPa–850hPa, 10°N–15°N付近の水蒸気フラックスの有意な発散の増大傾向が関係する。その発散が増大する傾向を水平分布から考察すると、χ_850におけるサハラ砂漠周辺の収束が減少することと、その領域における水蒸気の減少傾向が考えられる。つまり、それらが下層における水蒸気フラックスの発散増大傾向の誘因となり、上昇流弱化がもたらされたと示唆される。しかしOLRはその領域で負のtrendとなり対応関係は示唆されないため、この議論にはデ・タ依存性に関する疑問が残る。

気温のtrendの鉛直分布に関して、有意な対流圈中層のcooling傾向は見られなく、ωのtrendとの対応も示されなかった。また、付録に示すがJJAにおける東部太平洋上(ITCZ域)の上昇流は有意に強化傾向である。しかし全球平均場でのHadley循環は弱化傾向にあるため、ITCZの上昇流強化よりも、インドと西部太平洋における上昇流弱化の方が強い割合であることが考えられる。
3.6 3月における解析結果

図3.21：3月におけるψと子午面循環の気候値とψ-index。左図：ψと子午面循環の気候値の経度-高度断面图。右図：ψ-indexの経年変化。単位,ベクトル,塗色などは,図3.2と同様。

3月では,10°S–5°Nで上昇し,対流圏界面付近を北極側に向かって流れ,15°N–30°Nで下降し赤道域に戻るという子午面循環が卓越する。またψの気候値は,中心付近で最大値1.8 × 10^{11}kg/sとなり,Kobayashi and Maeda(2006)の解析値 (NCEP1) よりも約1.5倍大きな値となった。右図にψ-indexの経年変化を示す。2.3 × 10^{-2}kg/s/yrの有意な正のtrendが見られ,この結果は彼らの結果よりも明瞭である。特に,彼らが指摘する1997年から2006年にかけてのtrendは明瞭であり,彼らの結果と矛盾しない結果となった。

次に3月のψ偏差場に対するEOF解析の結果を図3.22に示す。第1モードは寄与率59.7%で,10°S–20°Nに正の偏差が見られる。その最大値は1.0 × 10^{10}kg/sで,これはDJFに比べて約1.8倍大きい。時係係数のtrendは8.3 × 10^{-2}/yrで有意に正であり,3月のHadley循環の強化傾向と一致する。
図 3.22: 3月におけるψ偏差場に対する第1モードの空間パターンの緯度-高度断面図を示す．単位，塗色などは図3.3と同様．

図 3.23 に東西平均ωの気候値とω_{500}の緯度幅の経年変化を示す。10°S-10°N に上昇流 (ω最小値 -3.7 \times 10^{-2} Pa/s) が，10°N-30°N に下降流 (ω最大値 2.6 \times 10^{-2} Pa/s) が卓越することがわかる．

図 3.23: 3月における東西平均ωの気候値と500hPa上昇域の緯度幅の経年変化．単位，塗色などは図3.4と同様．

500hPa上昇流域の緯度幅の平均は 3.1 \times 10^3 km であった．その変化傾向には有意なtrendは見られず，DJFと同様に総流量が増えていることから上昇流の強化傾向が考えられる（3月におけるψ-indexの値はψの最大値ではないため，総流量が増えているとは言えないが，
Kobayashi and Maeda (2006)の定義は、Hadley循環のほぼ中心付近として500hPa, 7°N(9月は7°S)のψの値を用いているため、3月のψ-indexの値は概ね総流量であると考えられる。次に3月における上昇流と下降流の強さのtrendについて結果を示す。

図3.24: 3月における東西平均ωと南北風の気候値とtrend。左図: 東西平均ωのtrendの緯度-高度断面図。右図: 東西平均南北風のtrendの緯度-高度断面図。単位、塗色は図3.5と同様。

3月における東西平均したωと南北風のtrendを図3.24に示す。10°N–20°Nの上昇流域に有意なωの正のtrendが見られ、15°S–5°Sの下降流域にω有意な負のtrendが左図から確認された。また、上昇流域の正のtrendの最大値は6.6 × 10⁻⁴Pa/s/yrであり、下降流域の負のtrendの最小値は−3.7 × 10⁻⁴Pa/s/yrであった。一方右図から200hPa–300hPa付近の北風に有意な正のtrend(最大値3.6 × 10⁻²m/s/yr)が見られることから、3月のHadley循環に強化傾向が示唆される。これらの結果は、図3.21、図3.22で示したtrendと整合的な結果となった。

先述したように、Kobayashi and Maeda (2006)はHadley循環の季節進行の遅れを述べており、本研究からも3月におけるHadley循環の強化傾向が示されたが、その期間における経緯度毎の局所Hadley循環を解析することは季節進行の遅れの原因を探る上で有用であると考えられる。よって以下の節に3月、9月における局所Hadley循環のtrend解析の結果を記述する。
3.6.1 インド洋域における局所 Hadley 循環

インド洋域で東西平均した3月における各物理量のtrendと気候値を図3.25に示す。パターン相関係数は0.87であり、他の領域と比べて最大である。

(a) はインド洋域における子午面循環の気候値とωのtrendを示す。インド洋域の3月における局所 Hadley 循環は、15°S-5°Sで上昇し、対流圈界面付近で両極に向かって流れ、40°S-25°Sと10°N-20°N付近（こちらは地表面まで下降流が達していない）で下降し、熱帯域に戻る循環である。北側のセルが明瞭であることと、北半球冬季における Hadley 循環は北半球で卓越することを考え、3月におけるインド洋域の局所 Hadley 循環として北側のセルに焦点をあてる。trend分布は、上昇流領域のほぼ全域で有意なωの負のtrendとなり、その最小値は-1.6*10^{-3} Pa/sで、DJFと同じ割合である。

(b) は子午面循環の気候値と南北風のtrendを示す。5°S-10°N、200hPa-300hPa付近の北風に有意な正のtrend（最大値8.7*10^{-2} m/s/yr）と、850hPa-1000hPaの南風に有意な負のtrend（最小値-7.8*10^{-2} m/s/yr）が見られることから、(a)同様に局所 Hadley 循環の循環強化が示唆される。

(c) は鉛直積算水蒸気フラックスの発散の気候値とtrendを示す。気候値は18°S-0°付近で収束域となり、その両側で発散域となる。trendは15°S-5°Sの収束領域に-1.0*10^{-5} kg/s/yr以下の有意な負のtrend（水蒸気フラックスの収束が増大傾向）が見られる。この領域は(a)のωが有意な負のtrendを持つ領域と一致する。

(d) に降水量の気候値とtrendを示す。(a),(c)と対応して、降水量が最大となる領域17°S-3°Sにおいて有意な正のtrendがあり、その最小値は1.5*10^{-1} mm/day/yrである。

(e) は各層における\(\nabla \cdot (q V)\)のtrendである。15°S-5°S、800hPa-1000hPaに有意な負のtrend（最小値-9.5*10^{-10} kg/s/yr）が見られる。

(f) は気温の気候値とtrendである。気候値はDJF同様、熱帯域で高く極に向かうにつれて降温するほぼ南北対称の分布となる。また、上層では25°S-20°S、下層では5°S-5°N、25°S-35°Nに2.0*10^{-2} K/yr以上的有意な正のtrendが広がる。
図3.25: インド洋域で東西平均した3月における各物量のtrendと気候値を示す。(a)オの経度・高度断面図、(b)南北風の経度・高度断面図、(c)鉛直積算水蒸気フラックスの発散、(d)降水量。(e)\(\nabla \cdot (qV)\)の経度・高度断面図、(f)気温の経度・高度断面図。(a)-(f)における単位、折線、塗色などはそれぞれ図3.7の(a)-(f)と同様。
図3.26 は各物理量のインド洋域における緯度-経度断面図である。

(a) はインド洋域における SST の気候値と trend を示す。気候値は、インド南部 5°S-5°N 付近で 302K 以上の SST が最大となる領域が広がる。trend は、同領域上とアラビア海上で有意な正の trend が見られる。

(b) は OLR の気候値と trend を示す。タイ南部で 220 W/m² 以下となる OLR の最小領域での trend は有意ではなく、約 10° 北側の領域に -3.0 ¥ W/m²/yr 以下の有意な負の trend がある。また 25° 以北の大陸上では、有意な正の trend が確認された。

(c) に χ₈₅₀ の気候値と trend を示した。気候値で収束が最大となる領域の約 15° 西側の領域である 25°S-5°S，80°E-105°E 付近で，-6.0 ¥ 10⁴ m²/s/yr 以下の有意な負の trend が見られる。この緯度は上昇流の強化傾向がある領域と一致している。

(d) は 1000hPa における比湿の気候値と trend である。気候値は 25°S-5°N で 1.6 ¥ 10⁻² kg/kg 以上の相対的に湿潤な領域となる。trend に関しては、インド大陸と南部アラビア海で -0.2 ¥ 10⁻³ kg/kg/yr 以下の有意な負の trend が見られ、南半球では有意な trend はほとんど見られなかった。
図 3.26: 3 月におけるインド洋域での各物理量の気候値と trend の経度 - 緯度断面図を示す。 (a) SST の経度 - 緯度断面図、(b) OLR の経度 - 緯度断面図、(c) χ_{850} の経度 - 緯度断面図、(d) 1000hPa における比湿の経度 - 緯度断面図。 (a) 〜 (d) の塗色、コンター、単位などは図 3.18 と同様。
3.6.2 西部太平洋域における局所 Hadley 循環

西部太平洋域で東西平均した 3 月における各物理量の trend と気候値を図 3.9 に示す。パターン相関係数は 0.70 である。

(a) は西部太平洋域における子午面循環の気候値と ω の trend を示す。西部太平洋域の 3 月における局所 Hadley 循環は，20°S–10°N で上昇し，対流圏界面付近で両極向きに流れ，15°N–20°N と 30°S–25°S 付近で下降し，熱帯域に戻る循環である。インド洋と同様に北側のセルに焦点を当てる。trend を見ると，15°S–5°S の上昇流域の ω に有意な負の trend(最小値は −1.6 × 10^{-3} Pa/yr) があり，局所 Hadley 循環の強化を示唆する。

(b) は子午面循環の気候値との南北風の trend を示す。対流圏上層 10°S–5°S の南風域に有意な正の trend があり，下層には有意な領域はないと。0.8 × 10^{-2} m/s/yr 以上の正の trend は局所 Hadley 循環を強化させる。

(c) は鉛直積算水蒸気フラックスの発散の気候値と trend である。気候値は 20°S–8°N で収束域，10°N–30°N で発散域となる。収束域は全球東西平均の 2 倍以上であり，10°S 付近に有意な負の trend が見られた。

降水量の気候値と trend を (c) に示す。気候値は水蒸気フラックスの収束に対応して 20°S–10°N で降水は最大となる。(a) の ω の有意な負の trend の領域と降水の有意な正の trend(最大値 1.5 × 10^{-1} mm/day/yr) の領域は一致しており，その領域が降水が最大となる領域から約 5° 南にあることから，降水最大域の南偏が示唆される。

各層における $\nabla \cdot (qV)$ の trend を (e) に示す。下層の 20°S–5°S に有意ではないが強い収束増大傾向が見られる。その trend は中層まで広がり，500hPa–700hPa では 1.0 × 10^{-10} kg/s/yr 以上の有意な負の trend となる。

(f) に気温の気候値と trend を示す。気候値は DJF の気候値とほぼ変わらない。trend は下層の 15°S–15°N に有意な正の trend が見られ，上層には見られない。
図 3.27: 西部太平洋域で東西平均した 3 月における各物量の trend と気候値を示す。 (a)\(\omega\) の緯度 - 高度断面図．(b) 南北風の緯度 - 高度断面図．(c) 鉛直積算水蒸気フラックスの発散．(d) 降水量．(e)\(\nabla \cdot (q\nabla)\) の緯度 - 高度断面図．(f) 気温の緯度 - 高度断面図．(a)〜(f) の塗色，コンター，単位などは図 3.7 と同様．
図3.29に各物理量の西部太平洋域における緯度-経度断面図を示す。

(a) は西部太平洋域におけるSSTの気候値とtrendを示す。気候値は10°S-10°Nで301K以上の高いSST域となっており、ニューギニア島周辺とオーストラリア北東部に2×10⁻²K/yr以上の有意なtrendが見られる。

(b) はOLRの気候値とtrendを示す。SSTが高い領域と対応して10°S-10°N付近は相対的に低い値を示す。オーストラリア北東部における-6.0×W/m²/yr以下の有意な負のtrendは(a)の有意な領域と一致する。

(c) にχ₈₅₀の気候値とtrendを示した。気候値で-6.0×10⁶m²/s以下の収束が最大となる領域の南に、有意ではないが-8.0×10⁴m²/s/yr以下の負のtrendとなる領域が存在する。比湿の気候値とtrendを(d)に示す。15°S-0°, 150°E-170°Eに、1.8×10⁻³kg/kg以上の相対的に高い領域が広がる。その領域の南であるオーストラリア北東部に0.2〜0.4×10⁻¹kg/kg/yrの有意な正のtrendが確認され、これは、降水量の南偏と対応する。

図3.27(a),(d)や図3.29で示唆された南偏傾向は各月と比較しても明瞭であり、図3.28にω₅₀₀と降水量の各月のtrendを示す。左図からω₅₀₀の有意な負のtrendが1月〜3月にかけて南偏していることがわかる。特に、15°S〜5°Sでは有意であり、3月に南偏のpeakとなり、その傾向は降水量の各月のtrendからもわかる。

図3.28: 西部太平洋域におけるω₅₀₀と降水量の各月のtrendの時間-緯度断面図を示す。左図: ω₅₀₀の各月のtrend。横軸は月、縦軸は緯度を表す。青: 赤: それぞれ正、負のtrendである。右図: 降水量の各月のtrend。横軸は月、縦軸は緯度を表す。赤: 正のtrend、青: 負のtrend。実線、点線はそれぞれ信頼水準90%、95%以上の領域を示す。
図 3.29: 3 月における西部太平洋域での各物理量の気候値と trend の緯度 - 経度断面図を示す。（a）SST の緯度 - 経度断面図、（b）OLR の緯度 - 経度断面図、（c）χ850 の緯度 - 経度断面図、（d）1000hPa における比湿の緯度 - 経度断面図。（a）〜（d）の塗色、コンター、単位などは図 3.8 と同様。
3.7 3月の結果に対する考察

3月においてHadley循環の強化が示され、インド洋と西部太平洋域の局所Hadley循環の強化が大きく影響していると考えられる。以下、それぞれの領域における結果に対する考察を述べる。

インド洋

インド洋域における局所Hadley循環の強化は、DJFと同様で、下層の水蒸気フラックスの収束が増大する傾向に伴う対流強化が考えられる。また、\(\omega \)のtrendの最小値をDJFと比較すると上昇流の強化傾向はDJFより約5％強く、DJFでは北偏傾向が示されたが、3月においては上昇流域ほぼ全域で\(\omega \)の負のtrendが確認された。水蒸気フラックスの収束増大傾向の最小値は、3月の方が約36％強く、これらを考慮した場合インド洋域ではDJFよりも3月のほうが強い循環強化傾向にあることが指摘される。しかしDJFは平均値なので、むしろKobayashi and Maeda（2006）が述べるようにDJFの名残が3月に表れていると考えたほうが適切である。水平分布を解析するとSSTが正のtrendの有意な領域と\(\chi_{850} \)における有意な収束強化領域は少しうるが、その最小値はDJFのそれと比べて40％ほど強い。また比較のtrendは同領域においてほとんど変わらないため、下層風の収束強化が3月の局所Hadley循環を強化させることが示唆される。これらの傾向はOLRの解析も確認することができるため、データ依存性は低いか考えられる。

気温のtrendの鉛直分布に、Mitas and Clement（2006）が指摘するような有意な対流圏中層に負のtrendは見られなかった。

西部太平洋

西部太平洋において局所Hadley循環の強化が示された。下層における水蒸気フラックスの収束の増大傾向は有意ではないが、周りに比べて相対的に強く、500hPa-700hPaの有意に収束が増大する傾向と上昇流強化との対応が考えられる。DJFと比較すると、上昇流の強化trendは3月の方が60％ほど強く、インド洋域と同様に3月へのphase shiftが示唆できる。水平分布から上昇流強化領域とO - ストラリア北東部のSSTの正のtrend、OLRの負のtrend、\(\chi_{850} \)における収束傾向、比湿の正のtrendが一致していることが示された。つまりO - ストラリア北東部のSSTの上昇(DJFよりも明瞭)に伴い、下層風の収束強化、上昇流強化が起きる。

対流圏中層における気温の有意な負のtrendは見られなかった。また気温のtrendの鉛直分布は\(\omega \)のtrendとも対応していない。
3.8 9月における解析結果

図3.30に9月におけるψと子午面循環の気候値と, ψ-indexの経年変化を示す。ψ-indexは、第3.3章に述べたKobayashi and Maeda(2006)の定義に従った。

9月におけるHadley循環は、5°N–20°Nで上昇し、対流圈界面付近を赤道側に向かって流れ、35°S–15°Sで下降し赤道域に戻るという子午面循環が卓越する。ψの気候値は、中心付近で最小値 −2.3 × 10^{11} kg/s となり、この値はKobayashi and Maeda(2006)の解析値の約1.6倍である。ψ-indexの経年変化には有意なtrendが見られず、これらが指摘する9月のHadley循環の強化とは異なる結果である。しかし1996年以降の経年変化には有意な負のtrendが見られ（値が負なので循環強化傾向）、彼らと一致する結果であるが、本研究ではJJAと同様に全期間におけるtrendを基に議論を試みる。

その様子はEOF解析の第1モードからも確認された。図3.31は9月のψ偏差場に対するEOF第1モードのパターンと時係数の経年変化である。第1モードの寄与率は38.2％で、20°S–15°Nに負の偏差を持つ。その最小値は −6.9 × 10^9 kg/s で、JJAと比べると相対的に9月の方が約13％大きい。時係数のtrend有意性は見られなかったが、2004年までは弱化傾向にあり2005年と2006年に強化することがわかる。
図 3.31: 9 月における ψ 偏差場に対する第 1 モードの空間パターンの緯度 - 高度断面図を示す。单位、塗色などは図 3.3 と同様。

これまでの解析と同様に、図 3.32 に東西平均 ω の気候値と 500hPa 上昇流の緯度幅の経年変化を示す。5°N–20°N で上昇流域、40°S–3°N で下降流域となる。ω は 300hPa 付近の上昇流域で最小値 –6.5 × 10^{-2}Pa/s となり、下降流域で最大値 2.9 × 10^{-2}Pa/s となる。ω_{500} の緯度幅の平均は 2.8 × 10^{3} km で、その変化傾向は年間 14km/yr の割合で拡大していることがわかった。つまり、流量に変化が見られなくなった幅が拡大していることから、上昇流の弱化傾向と考えられる。

図 3.32: 9 月における東西平均 ω の気候値と 500hPa 上昇域の緯度幅の経年変化。単位、塗色などは図 3.4 と同様。
3.8. 9月における解析結果

図 3.33: 9月における東西平均 ω と南北風の気候値と trend．左図: 東西平均 ω の trend の緯度 - 高度断面図．右図: 東西平均南北風の trend の緯度 - 高度断面図．

次に9月における東西平均した ω と南北風の trend を図 3.33 に示す．Hadley 遷移の弱化を示唆する ω の trend として，中層から上層にかけての10°N–15°N の上昇流域の有意な ω の正の trend と，15°S–8°S の下降流域に ω 有意な負の trend が挙げられる．南北風の trend からは，上層10°N–15°N の北風領域に正の trend が確認された．一方，Hadley 遷移の強化を示唆する ω の trend として，700hPa 付近，8°N–10°N の上昇流域における有意な負の trend と，下層の30°S–25°S における下降流域に正の trend が見られた．南北風からは，同領域下層における南風域の正の trend が確認された．10°N–15°N における上昇流の強化傾向は JJA に比べて約23％弱く，循環強度の trend が不明瞭になる要因の1つであると考えられる．
大西洋域における局所Hadley循環

大西洋域で東西平均した9月における各物理量のtrendと気候値を図3.34に示す。パターン相関係数は0.67である。

(a) は大西洋域における子午面循環の気候値とωのtrendを示す。大西洋域の9月における局所Hadley循環では、5°N−15°N で上昇し、200hPa−300hPa 付近で赤道に向かって流れ、40°S−0° 付近で下降し、熱帯域に戻る循環が明瞭に現れる。200hPa−700hPa，10°N−15°N 付近の上昇流域のωに有意な正のtrend(最大値 1.3 × 10^{-3} Pa/s/yr) が見られ、同領域下層に有意な負のtrendが見られる。また，300hPa−500hPa，15°S−10°S 付近に有意な負のtrend(最小値 −5.6 × 10^{-4} Pa/s/yr) が確認された。

(b) に子午面循環の気候値と南北風のtrendを示す。15°S−10°N における上層の北風域に最大値 4.5 × 10^{-2} m/s/yr となる有意な南風強化傾向があり，(a),(b)から局所Hadley循環の弱化が示唆される。

鉛直積算水蒸気フラックスの発散の気候値とtrendを(c) に示す。気候値は2°N−13°N に収束域があり，全球東西平均倉とほぼ同じ大きさである。10°N 付近の収束領域で有意な発散の増大傾向が見られ，その最大値は5.0 × 10^{-7} kg/s となる。この領域は上昇流強化領域と一致する。

(d) に降水量の気候値とtrendを示す。降水量は8°N 付近でpeakの10mm/dayとなり，その領域の2°−3° 北の10°N 付近に−5.0 × 10^{-1} mm/day/yr を越える有意な負のtrendが見られる。

(e) は各層における∇・(qV) のtrendである。850hPa−1000hPa，13°N 付近に有意な負のtrendがあり，その上層に最大値 4.6 × 10^{-10} kg/s/yr となる有意な正のtrend が見られた。

(f) は気温の気候値とtrendである。気候値は下層において北半球の方が南半球に比べ気温が高い。2.0 × 10^{-2} K/yr 以上の有意な正のtrendとなるのは，下層の5°N−30°N と200hPa−500hPa，20°N−40°N の領域である。また北半球 100hPa 付近では最小値 −8.6 × 10^{-2} K/yr となる有意な負のtrend が確認された。
図 3.34: 大西洋域で東西平均した 9 月における各物量の trend と気候値を示す。(a)ωの緯度 - 高度断面図。(b)子午面風の緯度 - 高度断面図。(c)鉛直積算水蒸気フラックスの発散。(d)降水量。(e)\(\nabla \cdot (qV)\)の緯度 - 高度断面図。(f)気温の緯度 - 高度断面図。(a)〜(f)における単位、折線、塗色などはそれぞれ図 3.7 の (a)〜(f) と同様。
図 3.35 は各物理量の大西洋域における緯度 - 経度断面図である。

(a) はインド洋における SST の気候値と trend を示す。カリブ海とカナリア諸島周辺の SST が高い領域に、2.0 x 10^{-2} K/yr 以上の有意な正の trend が広がり、図 3.34(a) の下層における 10\degree N–15\degree N の有意な負の trend と対応していると考えられる。また、ギニア湾にも一部有意な正の trend となる領域が見られる。

(b) は OLR の気候値と trend を示す。10\degree N–15\degree N, 0\degree–20\degree E の気候値で 240 W/m^2 以下となる領域で有意な負の trend が見られ、アンデス山脈南部に有意な正の trend が確認された。

(c) は χ_{850} の気候値と trend を示した。気候値は 20\degree S–10\degree S, 40\degree W–0\degree で 5.0 x 10^{6} m^2/s 以上となる発散領域がある。–3.0 x 10^{4} m^2/s/yr 以下となる有意な trend がギニア湾南方と中部大西洋に見られ、後者は SST の正の trend の領域とはほぼ一致する。

1000hPa における比湿の気候値と trend を (d) に示す。気候値は北半球海洋上で 1.6 x 10^{-4} kg/kg 以上となる。trend はサハラ砂漠とブラジル高原で –1.0 x 10^{-4} kg/kg/yr 以下の有意な負の trend が明瞭であり、最大値 1.5 x 10^{-4} kg/kg/yr を越える有意な正の trend がアンデス山脈、ギニア湾、アフリカ大陸南部で確認された。
図 3.35: 9月における大西洋での各物理量の気候値と trend の緯度 - 経度断面図を示す。(a) SST の緯度 - 経度断面図。(b) OLR の緯度 - 経度断面図。(c) χ850 の緯度 - 経度断面図。(d) 1000hPa における比溼の緯度 - 経度断面図。(a)～(d)の塗色、コンター、単位などは図 3.18 と同様。
3.9 9月の結果に対する考察

9月における Hadley 循環の trend は明瞭ではなく、その傾向に関する考察を以下に示す。図 3.33 から上層の北風領域では負の trend であり、中層の正の trend 領域における気候値は殆どどちらかわからないか、弱い南風である。また、trend は上層の正の trend よりも中層の負の trend の方が割合が大きい。つまり式 2.2.1 で定義された \(\psi \) において、南北風を積分すると 500hPa、7S の値に明瞭な trend が表れにくい可能性が示唆される。また上昇流と下降流の強化を JJA と比較すると、その割合（上昇流の強化傾向の最大値を比較すると、JJA よりも 23 %小さい）も空間分布も小さくなり、JJA では有意であった Hadley 循環の強化傾向が不明瞭となる誘因として考えられる。しかし、図 3.33 に示した緯度高度断面図や、総流量は変化せず上昇流領域の緯度幅が広がる傾向にあることを考慮すると、9月における Hadley 循環の強化が示唆される。局所的に解析すると大西洋域における循環の強化が大きく影響していることがわかった。よって以下に、大西洋における局所 Hadley 循環の強化傾向について考察を述べる。

大西洋

図 3.34(a),(b) から中上層では循環強化が、下層では循環強化の傾向が見られるが、その割合の大きさから循環弱化が示唆される。図 3.34(c) で示された 600hPa–850hPa、10°N–15°N における有意な水蒸気フラックスの発散増大傾向に伴う上昇流強化が考えられる。水平分布から確認されたカリブ海とカナリア諸島周辺における SST の昇温傾向は、\(\chi_{850} \) の収束傾向や下層の水蒸気フラックスの収束の増大傾向に伴う上昇流強化に対応していると考えられ、600hPa–850hPa 付近における水蒸気フラックスの発散増大傾向に対応していない。しかし \(\chi_{500} \) の trend を見ると、発散傾向が確認され、これは上昇流強化傾向と一致していた（図略）。また湿の有意な負の trend がサハラ砂漠に見られるが、上昇流や \(\chi \) とは対応していない。500hPa における湿の trend にも対応関係は見られない。つまり \(\chi_{500} \) の発散傾向が同気圧面における水蒸気フラックスの発散の増大に寄与していると思われる。

季節進行の遅れに関して、JJA と同様にインド洋では循環強化の傾向が、東部太平洋では ITCZ 強化傾向が見られた（図は付録 B）。つまり Kobayashi and Maeda(2006) が指摘する trend とはセンスが逆であるが、JJA の名残が9月に残るという点に関しては彼らと矛盾しない。
3.10 温暖化時における Hadley循環の予測結果に関連した考察

第1章に述べたように, 2007年にはIPCCによる第4次報告書がまとめられ, 温暖化時における気候システムに対する予測が示された. よって本節では, 前節で示したDJFとJJAにおける過去数十年間のHadley循環のtrendが, 温暖化の影響を捉えているかどうかについて, Hadley循環の将来予測を述べた研究を紹介しながら考察する.

図3.36に東西平均した気温の昇温量の鉛直分布における温暖化実験結果を示す(IPCC,2007). (a),(b),(c)はそれぞれ21世紀前半, 中盤, 後半を表し, その値は1980年〜1999年の平均から約5.0℃のマルチモデル平均である. (a)に示されるように21世紀初めにおいて既に温暖化の傾向は表れ, その傾向は対流圏全域で昇温傾向(熱帯対流圏上部において最大), 成層圏全体で降温傾向である. 升温傾向が熱帯対流圏上部において最大となるため安定度はよく, 熱帯の大気循環は弱まることが予想されている.

図3.36：温暖化時に予測される温度の経度-高度断面図. CO₂排出シナリオ A1Bによる温暖化実験結果を用いた各モデル間での平均値. 升温量は1980年〜1999年の平均から約5.0℃の差を示す.[(IPCC,2007)]

温暖化時に大気循環が弱まると指摘する研究に Held and Soden(2006)がある. 図3.37は, 彼らがIPCC AR4のモデル結果を用いて解析した, 温暖化時における水蒸気と降水量の増加率の散布図である. 彼らは, 水蒸気が温暖化時に Clausius-Clapeyron(CC)の割合で増加するのに対して, 降水量はCCよりも小さい割合で増加すると指摘している. また, 凝結や降水となった水蒸気が再び水蒸気に戻らないとし, \(P = Mq \) (\(P \): 降水量, \(q \): 典型的な境界層混合比, \(M \): 単位時間あたりの質量変化で大気循環の強さの指標となる.)を仮定すると上記より \(M \) は急速に減少しなければならない主張している. そこで彼らは,

\[
\frac{\delta M}{M} = \frac{\delta P}{P} - 0.07\delta T, \quad \text{ここで,} \quad \delta q \propto 0.07\delta T
\] \hspace{1cm} (3.10.1)
図 3.37：温暖化時における水蒸気と降水量の増加率の散布図。左図：比湿 vs 地表面温度。横軸は \(\Delta T \)（単位：K）、縦軸は \(\Delta q \)（単位：%）。右図：降水量 vs 地表面温度。横軸は \(\Delta T \)（単位：K）、縦軸は \(\Delta P \)（単位：%）。

\(\Delta(\cdot) \) は、20C3M(20世紀再現実験)の最初の20年間の平均とA1B(21世紀温暖化実験)の最後の20年間の平均との差。図中の実線はClausius-Clapeyronの割合で、点は各モデルの解析結果。[Held and Soden, 2006]

を定義し（0.07はCCの割合）、全球平均した対流質量フラックスの経年変化を解析した結果、\(\delta M/M \)は減少していることを明らかにした。またVecchi and Soden(2007)は\(M \)と\(\omega_{500}^+ (\omega_{500}^+ \)は上昇流)の高い相関関係を明らかにした。そこで彼らは、\(P = \omega^+ \cdot q \)（\(q \)は可降水量）とし、Held and Soden(2006)に従い、

\[
\delta P/P = \delta \omega^+/\omega^+ + \delta q/q
\]

(3.10.2)

を定義しIPCC AR4の実験結果を用いて解析を行った結果、\(\omega^+ \)は温暖化に伴い弱化していることを明らかにした。そこで本研究では式3.10.1、式3.10.2を用いて熱帯域における\(\delta M/M, \delta \omega^+/\omega^+ \)を検討した。図3.38は、DJF、JJAにおけるそれらの経年変化である。
図 3.38: DJF, JJA における $\delta M/M$, $\delta \omega^+ / \omega^+$ の経年変化。横軸の単位：年，縦軸は無次元。

結果 DJF, JJA とともに $\delta \omega^+ / \omega^+$ と $\delta M/M$ は減少していることが明らかになった。前節から JJA の循環弱化は示唆されたが，DJF では循環強化が認められた。つまりこの結果から上昇流の弱化傾向が考えられるため，DJF の循環強化には下降流の強化が大きく寄与していると示唆できる。

第4章 結論

本研究ではJRA-25再解析データとNOAAのOLRのデータを用いて、Hadley循環の循環強度と形状におけるtrendを1979年〜2006年の期間で解析した。また経度毎の局所Hadley循環を解析することにより、どの領域がHadley循環のtrendに寄与しているのかを調べた。

DJF

DJFにおけるHadley循環には強化傾向があることがわかった。この結果は、Oort and Yienger (1996)の定義に従ったψ-indexの経年変化、EOF第1モードの時係数の経年変化、ωと南北風のtrendの緯度-高度断面図から確認することができ、先行研究と同様の結果となった。次にψ-indexの値、すなわち子午面内の総流量の変化傾向が上昇流域の幅に依存しているのか、上昇流の強さの変化傾向に依存しているのかを調べるため、ω_{500}の緯度幅を解析した。結果、緯度幅の経年変化に有意なtrendは見られなかった。つまり総流量が増加傾向にあり緯度幅が変化していないことから、上昇流の強化が考えられる。

次に、どの領域の局所Hadley循環がDJFにおけるHadley循環の強化傾向に寄与しているのかを調べるため、経度毎の局所Hadley循環を解析を行った。その結果、DJFにおいてインド洋、西部太平洋、東部太平洋域の局所Hadley循環がHadley循環の強化傾向に大きく寄与していることがわかった。

上昇流強化が示唆されたインド洋域、西部太平洋域では、SSTの上昇と下層の風の収束に関連した、水蒸気フラックスの収束の増大傾向が上昇強化と対応していることがわかった。インド洋域におけるその割合は、上昇強化傾向が最も強い領域において1979年に比べて約38％強まっており、同緯度下層における水蒸気フラックスの収束の増大傾向が最も強い領域において約48％強まることがわかった。また両者の相関は0.81であり、良い対応が見られた。さらに、インド洋域とITCZ北側では水蒸気フラックスの発散の増大傾向に伴う下降流強化が示唆された。

δM/M, δω^+/ω^+を検討した結果、DJFにおけるHadley循環の強化傾向は、下降流強化が寄与していることが明らかになった。つまり上記に示したインド洋域とITCZ北側の下降流強化が大きく影響していると考えられる。

気温のtrendの鉛直分布に関して、Mitas and Clement (2006)が指摘した対流層中層のcooling傾向は見られなかった。この傾向は全球東西平均した気温のtrendからも確認された（図略）。また上昇流と気温のtrendは対応しておらず、今後さらに議論する必要があるが、本研
究からは気温のtrendよりも下層の水蒸気フラックスのほうが重要であることが示された。

JJA

経度毎の局所Hadley循環を解析を行った結果、インド洋域と大西洋域における局所Hadley循環は弱化傾向にあり、特にインド洋域では上昇流の弱化傾向と偏南傾向が明瞭に表れた。水平分布の解析から、SSTが最大となる領域の南側、それに伴う下層風の収束帯の南側、さらにインド大陸上の気温の減少傾向が確認された。つまりそれらにより下層の水蒸気フラックスの発散が増大傾向となり、上昇流は弱化傾向になると考えられる。

本研究で問題定義したJJAにおける対流圈中層のcooling傾向に関して、一部の領域でその傾向が見られたが、全球東西平均した気温のtrendからはその傾向は見られなかった(図略)。つまりDJFにおける気温のtrendも考慮すると、Mitas and Clement(2006)の指摘はJRA-25には適用されないと考えられる。

Kobayashi and Maeda(2006)は、DJFにおける北側のHadley循環の特性が3月に残り、JJAにおける南側のHadley循環の特性が9月に残ることを述べ、季節進行の遅れを指摘している。本研究ではその期間におけるHadley循環のtrendと局所Hadley循環の寄与について解析を試みた。

3月

3月におけるHadley循環は強化していることがわかった。これは、Kobayashi and Maeda(2006)と矛盾しない結果で、むしろ彼らが示したtrendよりも強い強化傾向が表れた。またω_{500}
の緯度幅に有意な変化傾向は見られず、総流量が増加していることからDJF同様、上昇流の強化が考えられる。さらに経度毎のHadley循環の解析から、その強化傾向がインド洋域と西部太平洋域の局所Hadley循環の強化に因ることが示された。つまりこれらの領域における局所Hadley循環の強化が、季節進行の遅れの誘因となる可能性が考えられる。

9月

9月のHadley循環においてωと南北風のtrendの緯度-高度断面図から循環弱化傾向が示唆された。この傾向は、総流量が変化せず、上昇流域の緯度幅が年間14.1km/yrの割合で拡大することから考えられる。この結果はKobayashi
and Maeda(2006)の結果と異なる．また，この弱化傾向は，局所Hadley循環の解析から大西洋域が大きく影響していることが明らかとなった．

大西洋における局所Hadley循環の弱化傾向は，χ_{500}の発散増大と対応する600hPa–850hPaにおける水蒸気フラックスの発散増大傾向と対応している．Kobayashi and Maeda(2006)によって解析されたtrendとはセンスが逆であるが，9月においてJJAの名残が特に残る領域は大西洋であると思われる．

以上，各々の期間におけるHadley循環のtrendに関する結論である．またDJFにおいてITCZの強化を示したが，その強化傾向は2月と3月を除いた他の全ての月で確認され，これは興味深い事実である（付録図B.1）．

本研究における問題点と課題

本研究ではJRA-25再解析データのみを用いてHadley循環のtrendを解析したため，他の再解析データセットとの整合性の議論が不十分である．また独立な衛星データであるNOAAのOLRデータとの対応も十分ではなく，データ依存性についてさらに議論が必要である．特に気温とωのtrendにおける対応関係が希薄であることに対する考察は，本研究において今後重要な課題となる．また循環強度と面積の関係については，Hadley循環の幅をモデル実験を用いて議論しているHeld and Hou(1980)やSatoh(1994)などから考察する必要がある．
謝辞

本研究を進めるにあたり、御忙しい中、研究指導や論文制作などに多大なる御尽力を頂きました指導教官の岩崎樹也教授に深く感謝申し上げます。向川均准教授には気象学や解析方法などを一から熱心に教えていただき、大変感謝しております。井口敬雄助教にはセミナー等で御意見をいただきました。また、谷口博氏、近本喜光氏にはパソコンや研究指導だけでなく、公私に渡り大変御世話になりました。

京都大学物理気候学研究室の里村雄彦教授には、本研究を始める際にJRA-25のデータを提供して頂きました。さらに里村教授をはじめ、西憲敬助教など物理気候の皆様にはセミナーを通じて貴重な御意見をいただきました。北海道大学海洋気候物理学教室の稲津將准教授には、地球温暖化実験データを提供していただきました。本編中に結果を示すことができませんでしたが、本研究においてさらに理解を深めることができた。以上の方々に厚く感謝致します。最後に秘書の中村貞代さんや災害気候研究室の皆様に、この場を借りて感謝の意を表します。

なお、本研究における図の作成にはGrADSを使用致しました。本研究で利用したデータセットは、気象庁及び電力中央研究所によるJRA-25長期再解析プロジェクトにより提供されたものであります。
付録A 物理量の定義と解析方法

この章では、第2章に示した本研究で用いた物理量の定義と解析方法の詳細を記載する。

A.1 物理量の定義

A.1.1 質量流線関数

Oort and Yienger(1996)に倣い、子午面内の質量輸送量を質量流線関数\(\psi\)で定義する。質量保存の式

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0 \tag{A.1.1}
\]

において、時間・東西平均を施すと

\[
\frac{\partial}{\partial y} (\rho \bar{v}) + \frac{\partial}{\partial z} (\rho \bar{w}) = 0 \tag{A.1.2}
\]

となる。ここで式(A.1.2)を球面に拡張して\(p\)系で考えると

\[
\frac{1}{R \cos \phi} \frac{\partial}{\partial \phi} [\bar{v}] \cos \phi + \frac{\partial [\bar{w}]}{\partial \rho} = 0 \tag{A.1.3}
\]

が求まる。ここで\(\bar{\cdots}\), []はそれぞれ東西平均、時間平均を表す。質量流線関数\(\psi\)を

\[
\tilde{v} = -\frac{g}{2\pi R \cos \phi} \frac{\partial \psi}{\partial \rho}, \quad \tilde{\omega} = \frac{g}{2\pi R^2 \cos \phi} \frac{\partial \psi}{\partial \phi}
\]

で定義し、これを積分すると以下の式(A.1.4)を得る。

\[
\psi = \frac{2\pi R \cos \phi}{g} \int_{\rho=0}^{\rho=p_0} [\bar{v}] d\rho \tag{A.1.4}
\]
A.2. 解析方法

データの鉛直層数の制約により最上端は計算できないため，本研究では \(p = 0 \) を \(p = 30 \text{hPa} \) として計算した．

A.1.2 速度ポテンシャル

2 次元流を非回転成分と非発散成分にわけたとき，非回転成分（つまり発散成分）を速度ポテンシャル \(\chi \) を用いて定義する．2 次元流 \(\mathbf{V}(u,v) \) の発散成分を \(\mathbf{V}_x(u_x,v_x) \) とし，回転成分を \(\mathbf{V}_\phi(u_\phi,v_\phi) \) をとると，\(\mathbf{V}_x \) の発散は

\[
\nabla \cdot \mathbf{V}_x = \nabla \cdot \mathbf{V} = \frac{\partial u_x}{\partial x} + \frac{\partial v}{\partial y} = \frac{\partial^2 \chi}{\partial x^2} + \frac{\partial^2 \chi}{\partial y^2} = \nabla^2 \chi, \quad \therefore \nabla \cdot \mathbf{V}_\phi = 0 \quad (A.1.5)
\]

となる．ここで，

\[
u_x = \frac{\partial \chi}{\partial x}, \quad v_x = \frac{\partial \chi}{\partial y}
\]

と定義した．さらに本研究では Tanaka et al.(2004) に倣い，

\[
\chi = -\nabla^{-2} (\nabla \cdot \mathbf{V}) \quad (A.1.6)
\]

と定義した．また，本研究では球面に拡張して考えるため，球面調和関数（地球流体学会 DCL のサブルーチンパッケージ）を用いて微分した \(^1\)．なお，水蒸気フラックスの収束・発散を解析する際にも，球面調和関数を用いて微分演算を行った．

A.2 解析方法

A.2.1 Trend 解析

本研究では，Hadley 循環の長期変化傾向を解析するために Trend 解析を行う．Trend 解析の際に以下に示すような最小二乗法を用いた．例えば，時系列 \(y_i, x_i \quad (i = 1, 2, 3...n) \) に関して

\[
S = \sum_{i=1}^{n} (y_i - ax_i - b)^2
\]

を最小とする係数 \(a, b \) を求める．

\(^1\) 計算の際，T106 で行った
$$S = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

$$= \sum_{i=1}^{n} y_i^2 + a^2 \sum_{i=1}^{n} x_i^2 + nb^2 - 2ax_iy_i - 2b \sum_{i=1}^{n} y_i + 2ab \sum_{i=1}^{n} x_i$$

S を最小とする a, b を求めるため，$\frac{\partial S}{\partial a} = 0, \frac{\partial S}{\partial b} = 0$ から係数 a, b を求めるとき，

$$a = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i \right)^2}, \quad b = \frac{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i y_i \sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i \right)^2}$$

このように求まった係数 a を，回帰係数 (Regression Coefficient) という。

回帰直線の有意性

Trend 解析を行う際に，上記で求めた回帰直線が統計的に有意であるかを検証する必要があるが，本研究では分散分析表を用いた F 値の導出により回帰直線の統計的有意性を議論する。分散分析表を用いた有意性の議論とは，

仮説 H_0 : この回帰直線は予測に役立たない。

対立仮説 H_1 : この回帰直線は予測に役立つ。

という 2 つの仮説を検定する方法である。以下の表に分散分析表を示す。

<table>
<thead>
<tr>
<th>変動</th>
<th>平方和</th>
<th>自由度</th>
<th>平均平方</th>
<th>F 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>回帰による変動</td>
<td>S_R</td>
<td>1</td>
<td>V_R</td>
<td></td>
</tr>
<tr>
<td>誤差による変動</td>
<td>S_E</td>
<td>n-2</td>
<td>V_E</td>
<td>F_0</td>
</tr>
</tbody>
</table>

ここで，

$$S_R = a \left[\sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right)}{n} \right]$$

$$S_E = \sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} y_i \right)^2}{n} - S_R$$
A.2. 解析方法

\[V_R = S_R, \quad V_E = \frac{S_E}{n-2}, \quad F_0 = \frac{V_R}{V_E} \]

である。有意水準 \(\alpha \) から F 分布の表を用いて,

\[F_0 \geq F_{(1,n-2)}(\alpha) \]

ならば、仮説 \(H_0 \) を棄却し対立仮説 \(H_1 \) を採用し、この回帰直線は予測に役立つということが考えられる。

A.2.2 相関解析

ある時系列 \(y_i, x_i \) \((i = 1, 2, 3...n)\) に関して、2 つの時系列の間の相関を定量的に議論する際に用いられる統計解析である。相関係数 \(r \) は,

\[
 r = \frac{n \sum_{i=1}^{n} x_i y_i - \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right)}{\sqrt{\left[n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i \right)^2 \right] \left[n \sum_{i=1}^{n} y_i^2 - \left(\sum_{i=1}^{n} y_i \right)^2 \right]}}
\]

として求められ、\(-1 \leq r \leq 1\) である。

\(\square \) パターン相関解析

ある空間パターン \(\psi(x, y) \) と \(\chi(x, y) \) がどれだけ一致しているかを求める際に行う解析方法である。相関係数 \(R \) は、サンプル数を \(N \) とすると,

\[
 R = \frac{\sum_{i=1}^{N} (\psi_i - \bar{\psi}) (\chi_i - \bar{\chi})}{\sqrt{\sum_{i=1}^{N} (\psi_i - \bar{\psi})^2 \sum_{i=1}^{N} (\chi_i - \bar{\chi})^2}}, \quad \bar{\psi} = \frac{1}{N} \sum_{i=1}^{N} A_i
\]

として求めることができる。2 つの空間パターンが完全に一致(反転)しているとき、最大値 +1 (最小値 −1) をとる。気象場では一般的に相関係数が 0.6 以上あれば 2 つのパターンは似ているとされる。

\(\square \) 相関の有意性
Trend 解析同様に相関係数の有効性を議論する必要があるが，その際しばしば用いられる検定手法が「無相関の検定」である。

仮説 \(H_0 : 2 \) つの時系列 \((y_i, x_i)\) には相関がない。
対立仮説 \(H_1 : 2 \) つの時系列 \((y_i, x_i)\) には相関がある。

という仮説を立てた上で，\(t \) 検定を行う。\(r \) を相関係数，\(n \) をサンプル数として検定統計量 \(T(r) \) を求める。

\[
T(r) = \frac{r \sqrt{n - 2}}{\sqrt{1 - r^2}}
\]

仮説 \(H_0 \) が成り立つとき，\(T(r) \) の分布は自由度 \(N - 2 \) の \(t \) 分布になることが知られており，\(\alpha \) を有意水準すると

\[
T(r) \leq -t_{n-2} \left(\frac{\alpha}{2} \right) \quad \text{及び} \quad T(r) \geq t_{n-2} \left(\frac{\alpha}{2} \right)
\]

のとき，仮説 \(H_0 \) は棄却し対立仮説 \(H_1 \) を採用することができるので，\(2 \) つの時系列 \(y_i, x_i \) には相関があると考えられる。

A.2.3 EOF 解析

本研究では，Hadley 循環の主要な変動成分を解析するため主成分分析 (EOF 解析: Empirical Orthogonal Function) を行った。(以下，主成分分析を EOF 解析と称する)。EOF 解析とは多くの変量の値を互いに独立な少数個の総合的指標で代表する手法である。具体的に以下の手法行った。50°S–50°N における格子点数 P 個，観測年数 N 年の Hadley 循環の気候値に対する偏差のデータセットを N 行 P 列の行列 \(W \) で表し，その分散共分散行列 \(V \) を求め，\(V \) を SSL2 を用いて固有値分解して

\[
Vz_i = \lambda_i z_i
\]

の固有ベクトル \(z_i \) と固有値 \(\lambda_i \) を求める。分散共分散行列を求める際に，緯度方向への重みとして \(\sqrt{\cos \phi} \) をかけ，鉛直方向にはデータが等間隔ではないことを考慮して，以下の式で示す重み \(w_n \) を偏差にかけた。

\[
w_n = \sqrt{\frac{(p_n - p_{n-1})/2 - (p_{n+1} - p_n)/2}{p_s - p_0}}
\]
A.2. 解析方法

ここで，$p_n (n = 1,2,3,...,15)$ は各気圧面を示す．上記で求めた固有値とそれに対応する固有ベクトルを大きい順に並び替え，第 1 モード，第 2 モード，...，第 P モードとする．各モードにおける固有ベクトルの平方和は 1 になるように規格化されている．また，全分散量に対する λ_i の割合を第 i モードの寄与率と呼ぶ．次に時係数 T を求める．時係数 T は固有ベクトルを用いて，$T = Wz$ と表すことができ，W と z の内積から求めることができる．
付録B 解析結果

本章では、第3章で示されなかった領域の解析結果と、東部太平洋域における各月のω₅₀₀と降水量のtrendを記載する。まず、ITCZの強化を示唆する図B.1を示す。

図B.1: 東部太平洋域におけるω₅₀₀と降水量の各月のtrendの時間-経度断面図を示す。左図：ω₅₀₀の各月のtrend。横軸は月、縦軸は経度を表す。青、赤はそれぞれ正、負のtrendである。右図：降水量の各月のtrend。横軸は月、縦軸は経度を表す。塗色、実線、点線は図3.28と同様。

また第3章で解析結果を示されなかった領域を以下の表に示し、次節にDJF、JJA、3月、9月の順で図を記載する。

<table>
<thead>
<tr>
<th>月</th>
<th>領域</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJF</td>
<td>大西洋</td>
</tr>
<tr>
<td>JJA</td>
<td>西部太平洋，東部太平洋</td>
</tr>
<tr>
<td>3月</td>
<td>大西洋，東部太平洋</td>
</tr>
<tr>
<td>9月</td>
<td>インド洋，西部太平洋，東部太平洋</td>
</tr>
</tbody>
</table>
B.1 DJF

大西洋

図 B.2: 大西洋域で東西平均した DJF における各物量の trend と気候値を示す。(a)ω の緯度・高度断面図. (b) 南北風の緯度・高度断面図. (c) 鉛直積算水蒸気フラックスの発散. (d) 降水量. (e) V · (qV) の緯度・高度断面図. (f) 気温の緯度・高度断面図. (a)〜(f) における単位、折線、塗色などはそれぞれ図 3.7 の (a)〜(f) と同様.
B.2 JJA

B.2.1 西部太平洋

図 B.3: 西部太平洋域で東西平均した JJA における各物量の trend と気候値を示す．(a)ωの緯度 - 高度断面図．(b) 南北風の緯度 - 高度断面図．(c) 鉛直積算水蒸気フラックスの発散．(d) 降水量．(e) VV の緯度 - 高度断面図．(f) 気温の緯度 - 高度断面図．(a)〜(f) における単位、折線、塗色などはそれぞれ図 3.7 の (a)〜(f) と同様．
B.2.2 東部太平洋

図 B.4: 東部太平洋域で東西平均した JJA における各物量の trend と気候値を示す。(a)ρ の緯度・高度断面図, (b) 南北風の緯度・高度断面図, (c) 鉛直積算水蒸気フラックスの発散, (d) 降水量, (e) \(\nabla \cdot (qV) \) の緯度・高度断面図, (f) 気温の緯度・高度断面図。(a)−(f) における単位、折線、塗色などはそれぞれ図 3.7 の (a)−(f) と同様。
B.3 3月

B.3.1 大西洋

図 B.5: 大西洋域で東西平均した3月における各物量のtrendと気候値を示す。 (a)ωの緯度 - 高度断面図，(b)南北風の緯度 - 高度断面図，(c)鉛直積算水蒸気フラックスの発散，(d)降水率，(e)V・(qV)の緯度 - 高度断面図，(f)気温の緯度 - 高度断面図。 (a)〜(f) における単位，折線，塗色などはそれぞれ図3.7の(a)〜(f)と同様。
B.3.2 東部太平洋

![Graphs and diagrams showing trends and climatic values in the eastern Pacific Ocean for March.](image)

図 B.6: 東部太平洋域で東西平均した3月における各物量のtrendと気候値を示す。(a) ω の緯度 - 高度断面図。(b) 南北風の緯度 - 高度断面図。(c) 鉛直積算水蒸気フラックスの発散。(d) 降水量。(e) V · (qV) の緯度 - 高度断面図。(f) 気温の緯度 - 高度断面図。(a)〜(f) における単位、折線、塗色などはそれぞれ図3.7 の (a)〜(f) と同様。
B.4 9月

B.4.1 インド洋

図B.7: インド洋域で東西平均した9月における各物量のtrendと気候値を示す。(a)ωの緯度-高度断面図、(b)南北風の緯度-高度断面図、(c)鉛直積算水蒸気フラックスの発散、(d)降水量、(e)∇・(qV)の緯度-高度断面図、(f)気温の緯度-高度断面図。(a)〜(f)における単位、折線、塗色についてはそれぞれ図3.7の(a)〜(f)と同様。

B.4.2 西部太平洋

図 B.8: 西部太平洋域で東西平均した 9 月における各物量の trend と気候値を示す．(a)\(\omega\)の経度 - 高度断面図．(b) 南北風の経度 - 高度断面図．(c) 鉛直積算水蒸気フラックスの発散．(d) 降水量．(e) \(\nabla \cdot (qV)\)の経度 - 高度断面図．(f) 気温の経度 - 高度断面図．(a)〜(f) における単位，折線，塗色などはそれぞれ図 3.7 の (a)〜(f) と同様．
B.4.3 東部太平洋

図 B.9: 東部太平洋域で東西平均した9月における各物量のtrendと気候値を示す。(a)\(\phi\)の緯度-高度断面図.(b)南北風の緯度-高度断面図.(c)鉛直積算水蒸気フラックスの発散.(d)降水率.(e)\(\nabla \cdot (qV)\)の緯度-高度断面図.(f)気温の緯度-高度断面図.(a)〜(f)における単位、折線、塗色などはそれぞれ図3.7の(a)〜(f)と同様.

[15] 大楽浩司，江守正多，2006：高解像度全球気候モデルによる地球温暖化時の夏季アジアモンスーン，水工学論文集，第50巻，547-552．