平成25年度 修士論文

全球数値予報モデルを用いた 台風進路予報誤差についての研究

京都大学大学院 理学研究科 地球惑星科学専攻

宮地 哲朗

熱帯低気圧の進路予測の精度は過去20年で大きく向上してきている.一方で,誤差の 大きな事例も依然として存在し,各国の予報センターごとに異なった予測を示す場合もあ る.数値予報誤差は,初期値の不確実性に伴う誤差と予報モデルの不確実性に伴う誤差と が複雑に組み合わさって生じるため,誤差の原因を単一の初期値と単一の予報モデルを用 いた実験で明らかにすることはできない.本研究では,米国環境予測センター(NCEP) の全球数値予報モデルGFSを用いて,複数のセンターの解析値を初期値とした進路予報 実験を行い,予測誤差が初期値の違い,及び予報モデルの違いによりどのような影響を受 けるのかを調査した.

まず,2009年に北西太平洋で発生した22個の熱帯低気圧について,NCEP,ヨーロッパ 中期予報センター(ECMWF),気象庁の解析値を初期値とした予報実験を行った.NCEP の初期値を用いた場合に比べ,ECMWFの初期値を用いた場合は,低解像度(T190)実 験,高解像度(T382)実験でそれぞれ,24時間予報で14%,18%,72時間予報で4%, 8%,位置誤差が改善した.

次に、予報センター間の予測進路に顕著な違いが見られた台風第 20 号 Lupit と台風第 17号 Parma について、さらに詳細な解析を行った. Lupit の予測では、初期値の交換に より、北への転向の予測が改善し、気象庁の予報モデルを用いた先行研究の結果と一致す る.この結果から、北への転向の予測は、予報モデルの影響を受けず、初期値の誤差が重 要であることが示唆される.また,熱帯低気圧環境場の風である指向流と予測進路の関 係を調べたところ、転向を予測した事例では、進行速度と指向流の時間変化がよく一致 しており、指向流の変化の予測が初期値の違いに影響を受けていたことが分かった。さら に、高解像度実験では低解像度実験に比べ、転向後の予測精度がよくなり、強度予測精度 も向上していた. このことは, Lupit の強度を維持することが, 北への転向の予測に重要 である可能性を示唆する.先行研究で,数値モデルの重要性が指摘されていた Parmaの 事例では,気象庁の予測の北進バイアスは,同じ初期値を用いた GFS による実験で減少 し、予報モデルの違いによる改善が確認された.しかしながら、北進バイアス傾向は依然 *残り、初期値の違いも北進バイアスに影響していることが示唆された. また、別の初期時* 刻の実験では、いずれの初期値を用いた実験でも、北進バイアスは見られなかった。した がって、この事例では、モデルの違いが北進バイアスに重要な影響を与えるものの、初期 時刻によってその影響は変動することが明らかになった.

最後に、初期渦の強度と構造の違いが、予測進路に与える影響を調べた. Lupitの事例 では、初期渦の強度に違いがあったが、初期値に用いた環境場成分と渦成分の組み合わせ により、北への転向の予測は異なっていたため、転向の予測には初期値における環境場成 分と渦成分、双方の再現性が重要であると考えられる.一方、Parmaの事例では、初期 値の渦の鉛直構造に違いが見られたものの、予測進路は環境場成分として用いた初期値 の実験とほぼ同じ進路をとり、初期渦の構造よりも指向流の再現性が重要であると考えら れる.

目 次

第1章	序論	1
1.1	熱帯低気圧の運動力学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2	熱帯低気圧の進路予測	6
1.3	気象庁全球モデルを用いた研究	9
1.4	本研究の目的	12
第2章	使用データと実験設定	13
2.1	使用データ	13
2.2	トラッキングアルゴリズム	16
2.3	初期値交換実験	18
2.4	初期値の作成方法	20
2.5	渦・環境場交換実験	23
第3章	熱帯低気圧進路予報への初期値の影響	28
3.1	2009 年に発生した熱帯低気圧についての解析	28
3.2	Lupit	33
3.3	Parma	46
第4章	初期渦と初期環境場の違いが与える影響	50
4.1	Lupit	50
4.2	Parma	57
第5章	結論	61

第1章 序論

1.1 熱帯低気圧の運動力学

熱帯での大気の運動は,第一近似的には順圧とみなすことができる.順圧渦度方程式は次のように書ける.

$$\frac{\partial \zeta}{\partial t} = -\boldsymbol{V} \cdot \nabla \zeta - \beta v \tag{1.1}$$

ここで、 ζ は相対渦度、Vは水平風ベクトル、vは南北風、 β はコリオリパラメータの南 北変化率である.右辺第1項は、移流により熱帯低気圧の渦がVの向きに移動すること を表す.熱帯低気圧渦を移流する環境風を「指向流」と呼ぶ.指向流が弱い場合を除け ば、この移流項が支配的となる.指向流による移流は、熱帯低気圧の運動をよく説明し ており、特に24時間後までの短期の予測においては比較的よい指標となる.指向流の定 義には様々なものがある.統計的には、熱帯では700 hPa 風 (George and Gray, 1976)や 700–500 hPa の対流圏中層の風向 (Chan and Gray, 1982) との相関がよいとされており、 850–300 hPa の重み付き平均 (Wu et al., 2011, 2013) なども使われる.

式(1.1)右辺第2項は右辺第1項に比べ小さいものの,この項の効果により熱帯低気圧 の運動方向は V の向きからずれる.実際,観測される熱帯低気圧の運動は,周囲の環境 風に比べて 1-2.5 m/s 程度北西にずれている(Carr and Elsberry, 1990;図1.1).この差 は,順圧渦度方程式のベータ効果とそれに伴う非線形効果で説明される.この非線形効果 による渦の移動速度は,北西方向に2m/s程度と見積もられ,実際に観測される熱帯低気 圧の移動方向と指向流の差によく一致する.初期渦として北半球の軸対称な渦を考える. 式(1.1)右辺第2項は,惑星渦度の移流により熱帯低気圧の東側で相対渦度を減少させ, 西側で相対渦度を増加させる.この線形的なベータ効果による渦の西進への寄与は小さ く,渦を西側に引き伸ばし渦構造の非軸対称化に寄与する(Chan and Williams, 1987). Fiorino and Elsberry (1989)は,式(1.1)の右辺を軸対称成分と非軸対称成分に分離して 解析を行い,ベータ効果によって励起された非軸対称渦による非線形効果を以下のように 説明した.まず,静止環境場での順圧渦度方程式の移流項を軸対称成分と非軸対称成分を 用いて次のように表す.

$$\frac{\partial \zeta}{\partial t} = -\mathbf{V}_a \cdot \nabla \zeta_s - \mathbf{V}_s \cdot \nabla \zeta_a - \beta v \tag{1.2}$$

添字aは非軸対称成分,sは軸対称成分を表す.式(1.2)右辺第1項は,相対渦度軸対称成分 の非軸対称流による移流(asymmetric advection of symmetric vorticity: AASV),右辺第 2項は,相対渦度非軸対称成分の軸対称流による移流(symmetric advection of asymmetric vorticity: SAAV),右辺第3項はベータ効果である.ここで, $V_s \geq \nabla \zeta_s$ は直交するため $V_s \cdot \nabla \zeta_s$ はゼロであり, $V_a \cdot \nabla \zeta_a$ は他の項に比べて微小であるため無視している.初期状態として北半球での軸対称渦を考える.ベータ効果により渦は西側に引き伸ばされ,非

図 1.1: 熱帯低気圧の運動ベクトルと指向流の差のコンポジット平均. (a-d) 北西太平洋の熱帯低 気圧について分類した George and Gray (1976) と Chan and Gray (1982) のデータ, (e, f) オー ストラリアと南西太平洋域の熱帯低気圧について分類した Holland (1984) のデータを用いて, (a) 位置(北緯 20°以北 GT, 北緯 20°以南 LT), (b)進行方向(西進 W, 東進 E, 北進 N), (c)速 度(低速 L, 中程度 M, 高速 F), (d)強度(弱い WK, 強い I, 非常に強い VI), (e)進行方向 (西進 W, 南西進 SW, 南進 S, 南東進 SE, 東進 E), (f)転向(転向前 B, 転向中 N, 転向後 A) で分類した上でコンポジット平均をとっている. Carr and Elsberry (1990)の Fig.1 より引用.

図 1.2: ベータドリフトの概念図.赤,青の陰影はそれぞれ,正,負の相対渦度偏差の非軸対称成 分を表している.(a) ベータ効果によるベータジャイアの生成.(b) ベータジャイアは熱帯低気圧 渦の流れにより西に傾き熱帯低気圧中心に北西方向の流れ(ventilation flow)を励起する.

図 1.3: 順圧渦度方程式 (1.1) を数値積分した結果得られた (a) 6 時間, (b) 12 時間, (c) 24 時間, (d) 72 時間後の非軸対称成分の流線関数. コンター間隔はそれぞれ, (a) 4×10^4 , (b) 8×10^4 , (c) 1×10^5 , (d) $2 \times 10^5 \text{ m}^2 \text{s}^{-1}$ で点線は負の値を示す. Fiorino and Elsberry (1989) の Fig.7 より引用.

軸対称性成分 ζ_a が増加し、1 対の渦(ベータジャイア)が励起される(図 1.2a). ベータ ジャイアは、渦自身の軸対称流による移流(SAAV 項)によって西に傾く(図 1.3). 初期 の調節過程の後、ベータ効果と SAAV 項はほとんどバランスして準定常状態となり、非軸 対称成分は、渦中心に北西方向の流れ(V_a)を形成する(図 1.2b). この非軸対称流によ る移流(AASV 項)により、渦は北西方向に移動する. この非軸対称流はベンチレーショ ンフロー(ventilation flow)とも呼ばれる.

しかしながら、全ての熱帯低気圧の運動をこのような順圧過程のみで説明することはで きない.実際の運動では、鉛直シアーによる傾圧過程や非断熱加熱が重要となる場合もあ る.Wu and Wang (2000)は、ポテンシャル渦度の時間発展方程式を用いて、傾圧大気に おける熱帯低気圧の運動を次のように説明した.熱帯低気圧と共に運動する相対座標にお けるポテンシャル渦度の時間発展は次のようにかける.

$$\left(\frac{\partial P}{\partial t}\right)_m = \left(\frac{\partial P}{\partial t}\right)_f + \boldsymbol{C} \cdot \nabla P \tag{1.3}$$

ここで、Pはポテンシャル渦度、Cは熱帯低気圧の運動速度ベクトル、添字m、f はそれ ぞれ、熱帯低気圧と共に運動する相対座標、固定された座標系(オイラー座標)でのポテ ンシャル渦度の時間変化率を表している.熱帯低気圧の渦を、軸対称な正のポテンシャル 渦度偏差とみなすとき、渦の運動はポテンシャル渦度の波数1成分の時間変化にのみ関係

図 1.4: 静止環境場,ベータ平面上での非断熱加熱を含んだ数値実験の60時間積分後における(a) 580 hPa,(b) 730 hPa,(c) 850 hPa 面での熱帯低気圧の運動ベクトル(矢印,単位は m/s)とポ テンシャル渦度の波数1成分の時間変化率(コンター).コンター間隔は3×10⁻¹¹ m²s⁻²K kg⁻¹. Wu and Wang (2000)の Fig.3 より引用.

図 **1.5**: 静止環境場,ベータ平面上での非断熱加熱を含んだ数値実験の 36 時間積分後における (a) 580 hPa,(b) 730 hPa,(c) 850 hPa 面での熱帯低気圧渦の運動ベクトル(C)と水平移流項 (HA)と非断熱加熱項(DH)の寄与. 鉛直移流項の寄与は非常に小さいため図では表示されてい ない. Wu and Wang (2000)の Fig.11 より引用.

する. したがって, 式 (1.3) は次のようにかける.

$$\left(\frac{\partial P}{\partial t}\right)_{1m} = \left(\frac{\partial P}{\partial t}\right)_{1f} + \boldsymbol{C} \cdot \nabla P_s \tag{1.4}$$

ここで添字*s*は軸対称成分,1は波数1成分を表す.渦の時間発展は,主に軸対称成分の 変化を引き起こすため,(1.4)左辺の変化は無視できる.したがって,式(1.4)は次のよ うになる.

$$-\boldsymbol{C}\cdot\nabla P_s = \left(\frac{\partial P}{\partial t}\right)_{1f} \tag{1.5}$$

すなわち,熱帯低気圧の運動速度(*C*)は,ポテンシャル渦度の波数1成分の時間変化率から推定することができ,ポテンシャル渦度の波数1成分の時間変化率が最大となる方向に向かって運動する(図1.4).

式(1.5)の右辺は、気圧座標系で次のようにかける.

$$\left(\frac{\partial P}{\partial t}\right)_{1} = \Lambda_{1} \left[-\mathbf{V} \cdot \nabla P - \omega \frac{\partial P}{\partial p} + g \left\{ -(f+\zeta) \frac{\partial}{\partial p} - \frac{\partial u}{\partial p} \frac{\partial}{\partial y} + \frac{\partial v}{\partial p} \frac{\partial}{\partial x} \right\} \frac{Q}{C_{p} \Pi} + (\text{friction}) \right]$$
(1.6)

ここで、u, v, ω は東西風、南北風, 鉛直p速度, fはコリオリパラメータ, gは重力加速 度, C_p は定圧比熱, Π は Exner 関数, Qは加熱率である.また、 Λ_1 は、波数1成分を取 り出す演算子である.式(1.6)の右辺第1項は水平移流、右辺第2項は鉛直移流、右辺第 3項は非断熱加熱によるポテンシャル渦度の生成、右辺第4項は摩擦項を表す.式(1.5), (1.6)から、熱帯低気圧の運動速度に対する各項の寄与を、高度ごとに推定することがで きる.傾圧モデルを用いた数値実験の結果では、対流圏下層から中層での鉛直移流項の効 果は比較的小さく、水平移流項と非断熱加熱項の寄与が支配的になり(図1.5),指向流 だけではなく非断熱加熱による直接の効果も重要となる(Wu and Wang, 2000, 2001).実 際の熱帯低気圧においても、地形に伴う降水分布の非軸対称化による非断熱加熱分布の変 化が進路や移動速度の変化に影響することがある(Wang et al., 2012, 2013).

Chan et al. (2002)は、北西太平洋で発生した熱帯低気圧に対してこの解析法を適用し、 多くの事例で熱帯低気圧の運動メカニズムを説明できることを示した.また、傾圧環境で の熱帯低気圧の運動について以下のように述べている.まず、式(1.6)の水平移流項を 次のように分解する.

$$\Lambda_1 \left[-\boldsymbol{V} \cdot \nabla P \right] = -\boldsymbol{V}_1 \cdot \boldsymbol{P}_s - \boldsymbol{V}_s \cdot \boldsymbol{P}_1 \tag{1.7}$$

式(1.7)右辺第1項は,非軸対称風による軸対称なポテンシャル渦度の移流(asymmetric advection of symmetric potential vorticity: AASPV)を表す. V₁は,環境風(指向流)だけではなく,ベータ効果によって励起される非軸対称風や非軸対称な非断熱加熱によって励起された非軸対称風を含む.右辺第2項は,軸対称風による非軸対称なポテンシャル渦度の移流(symmetric advection of asymmetric potential vorticity: SAAPV)を表す. P₁にはベータジャイア,環境場の鉛直シアー,非軸対称な非断熱加熱に伴う寄与が含まれる.熱帯低気圧の進行方向の変化が小さく定常的な運動をする場合,非断熱加熱項の寄与は小さく,水平移流項,特にAASPV項の寄与が大きくなる.一方,非断熱加熱項の寄与が大きいと,熱帯低気圧は非定常的な運動をする.非軸対称な非断熱加熱はポテンシャル渦度の波数1成分を増加させ,定常的な運動をする熱帯低気圧の場合に比べ,SAAPV項のAASPV項に対する相対的な寄与が大きくなる.特に,進行速度の遅い熱帯低気圧の場合,非断熱加熱の寄与が大きくなる傾向があるため,非断熱加熱項,SAAPV項,AASPV項の分布が時間的に変化し,非定常的な運動が引き起こされる.

2つ以上の熱帯低気圧が近い位置にある場合は、互いの渦の相互作用が運動に影響する 場合がある.気象庁では、2つ以上の熱帯低気圧がある点のまわりで低気圧性の回転運動 をすることを「藤原の効果」と呼んでいる.しかし、互いに近づき一方が取り込まれる 場合や、近接熱帯低気圧が全体として1つの渦のように運動する場合もあり、実際には複 雑な運動を示す.このような相互作用は、熱帯低気圧同士に限らず、熱帯低気圧と他のメ ソ擾乱、中緯度の高低気圧、モンスーンジャイロとの間にも存在し、熱帯低気圧の運動 に影響することがある.Carr and Elsberry (2000a,b)は、米国海軍全球大気予報システム (Navy Operational Global Atmospheric Prediction System: NOGAPS)と米国地球流体 研究所(Geophysical Fluid Dynamics Laboratory: GFDL)のハリケーンモデルの熱帯低 気圧進路予測誤差の原因を調査し、熱帯低気圧の相互作用によって引き起こされる進路予 測誤差が最も多く、この誤差は熱帯低気圧や中緯度低気圧の強度予測、互いの距離の予測 精度に起因すると述べている.Wu et al. (2013)は、北西太平洋上で北へ転向した熱帯低 気圧と、西へ転向した熱帯低気圧についてのコンポジット解析を行い、モンスーンジャイ アに伴う長周期成分の流れが熱帯低気圧の転向に与える影響を調べた.その結果,西へ 転向する熱帯低気圧ではモンスーンジャイアに伴う長周期成分の指向流が支配的である のに対して,北へ転向する熱帯低気圧では総観規模時間スケールの指向流が支配的となっ ており,モンスーンジャイアとの相互作用が熱帯低気圧の転向において重要であることを 示している.また,運動に寄与する現象の時間スケールの違いは進路予測精度の差にも影 響し,北へ転向する熱帯低気圧の進路予測は,西進する場合に比べ予測精度が低い理由と なっている可能性を指摘している.

1.2 熱帯低気圧の進路予測

熱帯低気圧の進路予測の精度は、過去20年の間に大きく向上している.図1.6は、気象 庁の熱帯低気圧進路予測の年平均誤差の経年変化である.2012年の3日予報の進路予測 の平均誤差は、1996年の2日予報の進路予測の平均誤差と同程度であり、過去20年間で、 3日予報の誤差は約300km、1日予報の誤差は約100kmまで改善している.図1.8は72 時間予報における各数値予報センターの年平均進路予報誤差の経年変化を示したもので あり、各センターとも概ね改善傾向にある.こうした進路予測の改善は、初期値となる解 析値を作成するデータ同化手法の発達、予報モデルの改善、数値計算資源の増加に伴う解 像度の向上、新しい衛星データなどの観測データの増加や品質の向上など様々な要因に起 因している.例えば、梅津・森安(2013)は、CMCの2000年から2001年にかけての大き な改善はデータ同化システムの変更と衛星データの同化開始、ECMWFの2005年、2010 年の大きな改善はそれぞれ、予報モデルの物理スキームの変更と水平高解像度化、気象庁 の1996年の大幅な改善は積雲対流スキームの変更と水平高解像度化が予測精度の改善に 影響していたと指摘している¹.

梅津・森安 (2013) は、2011 年に発生した熱帯低気圧を対象に世界の主要な数値予報センターの予測精度検証を行い、以下のように報告している.図1.8 は、2011 年に北西太平洋で発生した熱帯低気圧についての各センターの120 時間予報までの平均進路予報誤差を示したものである。検証対象は、最大風速17.2m/s 以上になったすべての熱帯低気圧 (Tropical Storm: TS) で、2011 年は21 個の熱帯低気圧が対象となっている。72 時間予報で見ると、ECMWFの予報精度が最もよく、気象庁、NCEP、KMA、BoM がほぼ同程度で続く。ECMWF の予報は初期時刻を除く全ての予報時間で最も精度がよく、72 時間予報における誤差は、気象庁の48 時間予報の誤差とほぼ同程度である。

図1.10は各センターの72時間進路予報における進路予報誤差を示したものである.進路予報誤差は、図1.9のようにベストトラックの進行方向成分(Along Track Error: AT)とその直交成分(Cross Track Error: CT)に分解し、進行方向に対して右側を正と定義する.また、ベストトラックの進行方向によって、転向前(時計回りに北から180°-320°)、転向中(320°-10°)、転向後(10°-180°)の各区分ごとに色分けしている.転向前ではCMA、

¹各数値予報センターの略称は次の通り.オーストラリア気象局(Boreau of Meteorology: BoM),中国 気象局(China Meteorological Administration: CMA),カナダ気象センター(Canadian Meteorological Centre: CMC),ドイツ気象局(Deutscher Wetterdienst: DWD),欧州中期予報センター(European Centre for Medium-Range Weather Forecasts: ECMWF),フランス気象局(Météo France),気象庁 (Japan Meteorological Agency: JMA),韓国気象局(Korea Meteorological Administration: KMA),米 国環境予測センター(the National Centers for Environmental Prediction: NCEP),英国気象局(United Kingdom Met Office: UKMO).

図 1.6: 気象庁の台風進路予報における中心位置の年平均誤差の 1982 年から 2012 年までの経年変化. 気象庁ホームページ(http://www.data.jma.go.jp/fcd/yoho/typ_kensho/table.html) のデータから作成.

図 1.7: 北西太平洋領域における 72 時間予報の平均進路予報誤差の 1991 年から 2011 年までの経 年変化. 梅津・森安 (2013)の図 4.1.8 より引用.

図 1.8: 2011 年の北西太平洋領域で発生したすべての熱帯低気圧における 120 時間予報までの平 均進路予報誤差. 凡例の括弧内の数字は予報時間 72 時間における各センターのサンプル数を表す. 梅津・森安 (2013) の図 4.1.2 より引用.

図 1.9: (a) 熱帯低気圧の転向区分と,(b) 進路予報誤差をベストトラックの進行方向成分(AT) と直交方向成分(CT) への分解の模式図.進行方向に対して右側が正となるように定義する.

CMC, DWD, 気象庁, Météo France, NCEP で転向前にAT が負となり速度が遅い傾向が ある. ECMWF にも弱いながら同じような傾向が見られる.また, CMC, Météo France, 気象庁ではCT が正となり, 転向前に進行方向に対して右側にずれる事例が多い.一方, KMA, UKMO は転向前速度が速い事例が多く, CT が負となる傾向も強い.転向中に区 分される事例では, UKMO に進行方向に対して西側にずれる傾向が強く, KMA でも弱 いながらも同じ傾向がある.転向後の区分では, CMC, Météo France 以外のセンターで 転向後速度が遅い事例が多く, KMA や UKMO は特にこの傾向が顕著である.

進路予報の平均精度は年々向上傾向にある一方,個々の事例で見た場合には,依然として大きな誤差を示す「大外れ事例」が存在し,中には,3日予報で1000kmを越える誤差

図 1.10: 2011 年の北西太平洋域で発生した熱帯低気圧の 72 時間進路予報誤差の分布図. 縦軸に 熱帯低気圧の進行方向の誤差成分,横軸に進行方向に直交する誤差成分をとり,横軸は進行方向 に対して右側を正としている.単位は km である.赤色は転向前,緑色は転向中,青色は転向後の 事例を示す.梅津・森安 (2013)の図 4.1.4 より引用.

を生じるような事例もある.このような事例の存在は,近年の進路予報誤差の改善がやや 鈍い(図1.6)ことの一因であると考えられ,数値予報センターごとに異なった予測結果 を示す場合もある.進路予測のさらなる向上には,このような大外れ事例の原因を究明 し,数値予報システムの改善につなげていく必要がある.

しかしながら,数値予報の誤差は初期値の不確実性に伴う誤差と,予報モデルの不確 実性に伴う誤差が複雑に組み合わさって生じるため,個々の事例の予報結果の精度検証か ら,数値予報システムの改良につながる情報を引き出すのは一般的に難しい.熱帯低気圧 の運動メカニズムに対する理解は進んでいるものの,その進路予測誤差の原因についての 理解は未だ不十分である (Carr and Elsberry, 2000a,b).

1.3 気象庁全球モデルを用いた研究

図 1.11: (a) 2009 年 9 月 5 日 12UTC を初期時刻とした Dujuan, (b) 2009 年 10 月 21 日 12UTC を初期時刻とした Lupitの JM-JI, EM-EI, JM-EI, JM-EI2 の進路予測, 及びベストトラックの 進路. 同時刻を初期時刻とした (c) Dujuan, (d) Lupit についての TEPS の進路予測. 図のマー カーは 24 時間ごとの位置を示している. Yamaguchi et al. (2012) Figure 3 より引用.

初期値からの JMA-GSM 実験(JM-EI),低波数成分(T42以下,約300km以上)のみ ECMWF 初期値を用いた JMA-GSM 実験(JM-EI2)と ECMWF の予測結果(EM-EI)と の比較から,初期値に誤差の原因があると考えられる事例と予報モデルに誤差の原因があ ると考えられる事例がいくつか例示されている.

図1.11は初期値に誤差の原因があると考えられる事例として挙げられた,初期時刻2009 年9月5日12UTCの台風第12号Dujuan,初期時刻2009年10月21日12UTCの台風第 20号Lupitについての3日予報の進路予測結果である.Dujuanの事例(図1.11a)では, JM-JIの予測は、ベストトラック、EM-EIの予測に比べ転向が早く、転向後の速度も速い. その結果、3日予報で位置誤差は595kmに達している.この事例では、初期値の交換に より転向のタイミング、速度は共に改善し、JM-EIでは3日予報の位置誤差は122kmに 減少した.Lupitの事例(図1.11b)では、JM-JIの予測は北への転向を予測できず、フィ リピンへ上陸する予測となっているのに対して、EM-EIの予測では転向後に速度が低下 するスローバイアスが見られるものの、北への転向を予測している.この事例も、初期値 の交換により予測が改善し、JM-EIでは転向が予測され、3日予報の位置誤差はJM-JIの 720kmから280kmに減少した.さらに、これらの事例では、低波数成分のみをECMWF 初期値に交換したJM-EI2でもJM-EIと同じく進路は改善されており、熱帯低気圧まわり の総観環境場に伴う指向流の表現が正確な進路予測に重要であることを示している.

図 1.11c, 1.11d は, 気象庁台風アンサンブルシステム(TEPS; Yamaguchi et al., 2009) 11 メンバーの進路予測である. Djuan の事例では, アンサンブルメンバー間で転向タイ

図 **1.12**: (a) 2009 年 8 月 4 日 12UTC を初期時刻とした Morakot, (b) 2009 年 9 月 30 日 12UTC を初期時刻とした Parma の JM-JI, EM-EI, JM-EI, JM-EI2 の進路予測, 及びベストトラック の進路. 同時刻を初期時刻とした (c) Morakot, (d) Parma についての TEPS の進路予測. 図の マーカーは 24 時間ごとの位置を示している. Yamaguchi et al. (2012) Figure 4. より引用.

ミング、転向後の速度が大きく異なっており、Lupitの事例では、北への転向を予測しているメンバーが存在する.二つの事例のアンサンブル予測は、初期値に対して熱帯低気圧の進路が敏感である場合には、TEPSは進路予測の不確実性を上手く表現できていることを示している.

図1.12は予報モデルに誤差の原因があると考えられる事例として挙げられた,初期時 刻2009年8月4日12UTCの台風第8号 Morakot,初期時刻2009年9月30日12UTCの 台風第17号 Parma についての3日予報の進路予測結果である. Morakot, Parma いずれ の事例でも,JM-JIはベストトラックに比べ北よりの進路をとる北進バイアスが見られ, EM-EIでは予測されている台湾,フィリピンへの上陸を予測できていない. この二つの事 例では,初期値を ECMWF の初期値に変えた JM-EI でも北進バイアスは改善されなかっ た. この結果は,北進バイアスは初期値に鈍感であり,予報モデルである JMA-GSM に 北進バイアスの原因があることを示唆している.

また,こうした事例では TEPS の全てのアンサンブルメンバーが,北進バイアスを示 しており,スプレッドが比較的小さいという特徴が見られる(図 1.12c, 1.12d).このア ンサンブル予測の結果は,初期値の不確実性だけではなく,予報モデルの不確実性も考慮 した予測が,これら二つの熱帯低気圧の正確な進路予測には必要であることを示唆して いる.

しかしながら、この研究はJMA-GSMのみを用いたものであり、特に Morakot と Parma

のように初期値の交換で予測が改善しなかった事例では,モデルの不確実性に伴う誤差で あると結論づけるには不十分であり,初期値に伴う誤差とモデルに伴う誤差を十分に切り 分けているとはいえない.この点を明らかにするためには,別の予報モデルを用いた初期 値交換実験を行なって結果の比較を行うことが必要である.

1.4 本研究の目的

本研究では、熱帯低気圧の進路予報誤差が、初期値の違いとモデルの違いによってどの ように変化するのかを、全球数値予報モデルを用いた数値実験により調べることを目的 とする.予報モデルに米国環境予測センター(NCEP)の全球数値予報モデルを用いて、 複数の数値予報センターの解析値を初期値とした進路予測実験を行い、初期値の違いに よる改善の効果を調べる.さらに、Yamaguchi et al. (2012)の結果と比較することで、予 報モデルの違いの影響についても考察する.また、各センターの解析値を環境場成分と、 熱帯低気圧の渦成分に分離し、相互に組み合わせた初期値を用いた数値実験を行い、初期 値の渦構造や強度の違いが進路予測に与える影響について調べる.

本論文の構成は以下の通りである.第2章で,使用データ及び,解析手法,数値実験の 設定について述べる.第3章では,2009年に発生した熱帯低気圧を対象とした初期値交 換実験の結果を示し,数値予報センター間の進路予測に顕著な違いが見られた2事例につ いて詳しく述べる.第4章では,第3章で初期値の違いが影響すると考えられる事例につ いて,初期値を大規模場の環境場成分と熱帯低気圧の渦成分に分離して,初期渦の構造, 強度の違いが進路予測にどのように影響するかどうかを調べる.最後に,第5章で本研究 の結論を述べる.

第2章 使用データと実験設定

2.1 使用データ

本研究で使用したデータは次の通りである.

2.1.1 全球解析データ

解析値として, ERA-Interim 再解析データ (Dee et al., 2011)を使用した.このデータ は, ECMWF により,4次元変分法データ同化法を用いて作成された,全球大気再解析 データである.水平格子間隔,鉛直層は,本研究で使用する最も間隔の粗い気象庁全球予 報データ(第2.1.2節)に合わせて間引いて使用する.使用したデータの概要を,表2.1に 示す.

表 2.1: 使用した ERA-Interim 再解析データの概要

水平	0.5°×0.5°緯度経度格子
鉛直	等気圧面 17 層(1000, 925, 850, 700, 600, 500, 400, 300,
	250, 200, 150, 100, 70, 50, 30, 20, 10 hPa)
解析時刻	6時間毎(00,06,12,18UTC)

2.1.2 予報データ

ECMWFの予報データには,熱帯対流年(the Year of Tropical Convection: YOTC) データベースで提供されている ECMWFの決定論予報データを用いる.データの使用の 際には,表2.2のように水平格子間隔,鉛直層を間引いて使用した.また,気象庁の予報 データには,気象庁全球スペクトルモデルによる決定論予報データを用いる.データの概 要を,表2.3に示す.

また,2009年の NCEP, ECMWF, 気象庁の各数値予報センターの数値予報システムの概要を表 2.4 に示す.

表 2.2: 使用した ECMWF の予報データの概要

水平	0.5°×0.5°緯度経度格子
鉛直	等気圧面 17層(1000, 925, 850, 700, 600, 500, 400, 300,
	250, 200, 150, 100, 70, 50, 30, 20, 10 hPa)
予報初期時刻	00, 06, 12, 18 UTC
予報期間	240 時間
出力時間間隔	6時間(00,06,12,18UTC)

表 2.3: 使用した気象庁の予報データの概要

水平	0.5°×0.5°緯度経度格子(地上-100hPa)
	1.0°×1.0°緯度経度格子(70–10 hPa)
鉛直	等気圧面 17層(1000, 925, 850, 700, 600, 500, 400, 300,
	250, 200, 150, 100, 70, 50, 30, 20, 10 hPa)
予報初期時刻	00, 06, 12, 18 UTC
予報期間	84 時間(初期時刻 00, 06, 18 UTC), 192 時間(初期時刻
	12 UTC)
出力時間間隔	6時間(予報時間84時間まで),12時間(予報時間96時間以
	降)

表 2.4: 2009年の各数値予報センターの決定論予報に用いられる数値予報システムの概要

	NCEP	ECMWF	JMA
解像度	T382L64	TL799L92	TL959L60
	(≤192-h)		
	T190L64		
	(≤384-h)		
予報時間	384 時間	360時間	84 時間
			$(00/06/18{ m UTC})$
			216 時間
			$(12 \mathrm{UTC})$
台風ボーガス	必要に応じて	なし	あり

2.1.3 予報モデル

予報モデルには、NCEPで開発、運用されている全球数値予報モデル、Global Forecast System (GFS version 9)を用いる.GFSは、NCEPの現業数値予報に用いられているも ので、2014年1月現在、IBM 社製のスーパーコンピュータ RS/6000 SP を用いて IBM の Unix オペレーティングシステム AIX 環境下で運用されている.本研究では、NCEP で利 用されている GFS のソースコード及び必要なライブラリ類を Linux 環境下で動作するよ うに移植作業を行った.数値実験では、この移植した GFS をコンパイルしたものを使用 する.GFS で用いられている力学スキーム、物理過程スキームの概要は表 2.5 の通りであ る¹.

支配方程式	プリミティブ方程式(静力学)
水平	スペクトル, reduced Gaussian 格子
鉛直	<i>σ-p</i> ハイブリッド座標
時間積分	leap-frog 法, semi-implcit 法
時間フィルター	Asselin フィルター
deep convection	simplifed Arakawa-Schebert スキーム
shallow convection	bulk mass-flux スキーム
境界層	Non-local closure scheme
放射(長波)	RRTM
放射(短波)	RRTM2
雲	Zhao and Carr スキーム
陸面	NOAH land surface model

表 2.5: GFS の概要

2.1.4 熱帯低気圧進路データ

熱帯低気圧の進路データには気象庁のベストトラックデータを用いた.ベストトラック データは3時間間隔の中心位置が記録されているが,解析データ,予報データと合わせる ために,本研究では,00,06,12,18 UTC での位置のみを使用する.気象庁では,海面 更正気圧極小点を熱帯低気圧の中心位置と定義している.

また、NCEP、ECMWF、気象庁の全球予報モデルによる熱帯低気圧進路予報のデー タとして、TIGGE Cyclone Exchange で提供されている Cyclone XML (CXML)形式の データを用いた². ただし、NCEPの進路予報データには4,5,9月のデータがアーカイ ブされておらず、この期間の熱帯低気圧の進路データは欠損となっている. CXML デー タには、各センターの予報データ上で同定された熱帯低気圧ごとに、予報値が記録されて いるが、センターによっては熱帯低気圧の位置は記録されているものの、熱帯低気圧の国 際名が記録されていない場合がある. この場合、CXML データに記録された熱帯低気圧

¹GFSの詳細な設定,変更履歴は,NCEP環境モデリングセンターのホームページ(http://www.emc. ncep.noaa.gov/GFS/doc.php)で見ることができる.

²http://cawcr.gov.au/projects/THORPEX/TC/index.html

の初期時刻での位置が、ベストトラックデータでの国際名を持つ熱帯低気圧の位置に近 く、かつ、周囲に他の熱帯低気圧が存在しない場合は、CXML データに記録された熱帯 低気圧を国際名をもつ熱帯低気圧のデータとして扱う。2009 年における、各センターの 数値予報システムは、表 2.4 の通りである。CXML データの熱帯低気圧の位置は、各予報 センターがそれぞれ独自の異なるアルゴリズムを用いて作成したものである。NCEP で は5つの基本パラメータ(700 hPa、850 hPa の相対渦度、ジオポテンシャル高度、海面更 正気圧)と2つの副パラメータ(700 hPa、850 hPa の風速)を組み合わせて中心を定義す るアルゴリズム (Marchok, 2002)、ECMWF、気象庁は海面更正気圧の極小値で中心を定 義するアルゴリズム (Van der Grijn, 2002; 山口・酒井, 2004)を用いている。

また,前後6時間の位置の差から求まる速度ベクトルをその時刻の熱帯低気圧の速度と して定義する.位置は6時間ごとに定義されるため,前後6時間の移動ベクトルの平均, すなわち中央差分を用いて定義することに相当する.さらに,ベストトラックデータか ら求めた速度ベクトルの方向によって,転向前(時計回りに北から180°-320°),転向中 (320°-10°),転向後(10°-180°)に分類する(図1.9a).

2.2 トラッキングアルゴリズム

本研究における熱帯低気圧中心は,海面更正気圧の極小点として定義する.格子データ からの中心位置のトラッキングは, Van der Grijn (2002)のアルゴリズムに従って作成し たプログラムを用いて行う.このアルゴリズムは次のような手順でトラッキングを行う.

- 1. 前の時刻における移動速度と指向流をもとに次の時刻の熱帯低気圧中心の第一推定 位置を求める.
- 2.1 で求めた第一推定位置のまわりで,海面更正気圧の極小点を格子点上での中心位置として求める.
- 3.2で求めた格子点での中心をサブグリッドに内挿して熱帯低気圧中心とする.

以下,このアルゴリズムの詳細を述べる.

時刻 $t + \delta t$ における第一推定位置 $r(t + \delta t)$ を,時刻 $t - \delta t$, t での位置からの外挿と,時刻tにおける指向流 $V_{st}(t)$ から決める。 δt はデータの出力時間間隔である。指向流は850,700,500 hPa の水平風の平均で定義し、環境場の大規模風を取り出すためT20 で切断してフィルターをかけたものを用いる。 $t + \delta t$ での熱帯低気圧の第一推定位置 r_{fg} をこれらの重み付き平均で定める(図 2.1)。

$$\boldsymbol{r}_{fq}(t+\delta t) = \boldsymbol{r}(t) + w\left[\boldsymbol{r}(t) - \boldsymbol{r}(t-\delta t)\right] + (1-w)\boldsymbol{V}_{st}(t)\,\delta t \tag{2.1}$$

ここで, w は重みで $0 \le w \le 1$ である. この値はデータの時間間隔 δt に応じて決められ, Van der Grijn (2002) に従い, 6 時間間隔の場合は w = 0.5, 12 時間間隔の場合は, w = 1/3を用いる. t = 0 ときは,ベストトラックデータの位置を, $t = \delta t$ のときは, $V_{st}(t = 0)\Delta t$ を第一推定位置 r_{fg} として用いる.

次に、 r_{fg} を中心とした 7° × 7° の範囲を定め、その範囲内で 850 hPa の相対渦度が最大 となる(南半球では最小となる)格子点を求める.この点を中心とした 7° × 7° の範囲で、

図 2.1: 第一推定位置 r_{fq}(灰色丸印)の決め方の模式図.

図 2.2: (a) 格子点での中心位置 r_m (赤色丸印)の決定, (b) サブグリッドでの中心位置 r_0 (星印)の決め方の模式図. 灰色丸印は第一推定位置 r_{fg} ,青色丸印は 850 hPa 相対渦度の最大(南半球では最小)位置である.また,青枠で囲まれた領域,赤枠で囲まれた領域はそれぞれ,第一推定位置,相対渦度の最大(最小)位置を中心とした 7°×7°の範囲を表している.

海面更正気圧が極小かつ最小となる格子点を求め、これを格子点上での中心位置 r_m とする(図 2.2).中心位置の探索に2つの物理量を用いるのは、熱帯低気圧の構造が保たれている限りは、850 hPa 相対渦度最大位置と海面更正気圧の極小位置は大きく離れていないことを保証するためである.

ここで、以下の条件のいずれかが満たされた時、トラッキングは終了する.

- 850 hPa 相対渦度の最大位置(南半球では最小位置)のまわりの 7° × 7° の範囲に, 海面更正気圧の極小位置が存在しない場合.
- 熱帯低気圧中心が45°N以北,45°S以南に到達した場合.
- 850 hPa 渦度最大値が, 7×10⁻⁵s⁻¹ を下回った場合.
- 中心気圧が1010hPaを超えた場合.

ただし,2つ以上の熱帯低気圧が互いに近い位置にある場合には,別の熱帯低気圧の中心 をトラッキングしてしまうため,一部の熱帯低気圧については,相対渦度の最大(最小) 位置,海面更正気圧の最小位置を探索する範囲を小さくした.

最後に格子点での中心位置 r_m をサブグリッドに内挿して最終的な中心を求める.サブ グリッドでの中心位置 r_0 を中心とした2次曲面を仮定すると、 r_0 近傍で海面更正気圧 p(r)は次のようにかける.

$$p(\boldsymbol{r}) = p_0 + {}^t (\boldsymbol{r} - \boldsymbol{r}_0) A(\boldsymbol{r} - \boldsymbol{r}_0)$$
(2.2)

ここで、 p_0 は r_0 での海面更正気圧、Aは直交行列で、

$$A = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right) \tag{2.3}$$

とする. r_m 及び, その隣接する東西南北4つの格子点, $r_{m+\Delta x}$, $r_{m-\Delta x}$, $r_{m-\Delta y}$, $r_{m+\Delta y}$ (図 2.2)の海面気圧, p_m , $p_{m+\Delta x}$, $p_{m-\Delta x}$, $p_{m-\Delta y}$, $p_{m+\Delta y}$ が式 (2.2)を満たすとき, 6 つの未知変数, $r_0 = (x_0, y_0)$, p_0 , a, b, cについての5つの方程式が得られる. さらに, 仮定した2次曲面の主軸の向きの違いによる効果は小さいとして無視すれば, b = 0と置 くことができ, 5つの未知変数に対して次の5つの閉じた連立方程式系を得る.

$$p_m = p_0 + a(x_m - x_0)^2 + c(y_m - y_0)^2$$
(2.4)

$$p_{m+\Delta x} = p_0 + a(x_m + \Delta_x - x_0)^2 + c(y_m - y_0)^2$$
(2.5)

$$p_{m-\Delta x} = p_0 + a(x_m - \Delta_x - x_0)^2 + c(y_m - y_0)^2$$
(2.6)

$$p_{m+\Delta y} = p_0 + a(x_m - x_0)^2 + c(y_m + \Delta_y - y_0)^2$$
(2.7)

$$p_{m-\Delta y} = p_0 + a(x_m - x_0)^2 + c(y_m - \Delta_y - y_0)^2$$
(2.8)

この方程式の解 p₀, x₀, y₀ は,

$$d_x = p_{m+\Delta x} - p_{m-\Delta x} \tag{2.9}$$

$$d_y = p_{m+\Delta y} - p_{m-\Delta y} \tag{2.10}$$

$$s_x = p_{m+\Delta x} + p_{m-\Delta x} - 2p_m \tag{2.11}$$

$$s_y = p_{m+\Delta y} + p_{m-\Delta y} - 2p_m \tag{2.12}$$

を用いて次のように求まる.

$$p_0 = p_m - \frac{1}{8} \left(\frac{d_x^2}{s_x} + \frac{d_y^2}{s_y} \right)$$
(2.13)

$$x_0 = x_m - \frac{1}{2}\Delta_x \frac{d_x}{s_x} \tag{2.14}$$

$$y_0 = y_m - \frac{1}{2} \Delta_y \frac{d_y}{s_y}$$
(2.15)

ここで、 Δ_x 、 Δ_y はそれぞれ経度、緯度の格子間隔である. $s_x = 0$ 、 $s_y = 0$ のときは、 $d_x = 0$ 、 $d_y = 0$ であるからそれぞれ、 $x_0 = x_m$ 、 $y_0 = y_m$ となる.

2.3 初期值交換実験

2.3.1 実験設定

NCEPの予報モデルGFSを用いて、複数の予報センターの解析値から作成した初期値 からの予報実験を行うことで、初期値の違いが進路予測に与える影響を調べる.本実験で は、NCEPの解析値を初期値としたコントロール実験(GFS-NCEP), ECMWFの解析値 を初期値とした実験(GFS-ECMWF),気象庁の解析値を初期値とした実験(GFS-JMA) の3つの実験を行う.実験設定は表2.6の通りである.対象期間は,NCEP,ECMWF,気 象庁3つの数値予報センターの解析値が全て入手可能であった2009年とする.2009年に 北西太平洋で発生した熱帯低気圧のうち,気象庁ベストトラックデータにおいて,最大風 速17.2 m/s以上であった全ての熱帯低気圧(Tropical Cyclone: TC)22個のうち,初期 時刻が12UTCである127事例(102初期日)を実験対象とする.

表 2.6: 初期値交換実験の設定

使用モデ	the NCEP Global Forecast System
ル	
解像度	低解像度実験:T190L64(水平約 70 km,最上層 0.3 hPa)
	高解像度実験:T382L64(水平約35km,最上層0.3hPa)
初期値	NCEP-CFSR, ECMWF 解析值, 気象庁客観解析值
境界値	NCEP-CFSR(SST 偏差は e-folding time 90 日で気候値に漸近)
対象事例	2009 年に発生した熱帯低気圧(TC)のうち初期時刻 12UTC の事
	例(127 事例)

NCEPの解析値には NCEP Climate Forecast System Reanalysis (NCEP-CFSR; Saha et al., 2010)の初期値,及び境界値³を用いる.概要は表 2.7の通りである.

表 2.7: NCEP-CFSR 初期値の概要

水平	T382 スペクトル
鉛直	<i>σ-p</i> ハイブリッドモデル面 64 層(最上層 0.3 hPa)
使用変数	仮温度,発散,渦度,比湿,オゾン質量混合比,雲水
	混合比

初期値作成に用いた ECMWF 客観解析値の概要は表 2.8 の通りである.GFS の予報変数である雲水混合比には、雲液水混合比と雲氷混合比の和を用いた.

表 2.8: 初期値作成に用いた ECMWF 解析値の概要

水平	0.5°×0.5°緯度経度格子
鉛直	<i>σ-p</i> ハイブリッドモデル面 91 層(最上層 0.1 hPa)
使用変数	地表気圧、気温、東西風、南北風、比湿、オゾン質量
	混合比,雲液水混合比,雲氷混合比

初期値作成に用いた気象庁客観解析値の概要は表 2.9 の通りである.70 hPaより上層の 雲水混合比はデータに含まれていないため,値はゼロとして内挿する.またオゾン量を表 すデータが含まれていないため気候値を代わりに用いた.

³米国気候データセンター(http://nomads.ncdc.noaa.gov/data.php?name=access#cfs-reanal)で 提供されている GFS の入力形式のフォーマットのデータを使用した.

表 2.9: 初期値作成に用いた気象庁客観解析値の概要

水平	1.25°×1.25°緯度経度格子
鉛直	等気圧面23層(1000,925,850,700,600,500,400,300,
	250, 200, 150, 100, 70, 50, 30, 20, 10, 7, 5, 3, 2, 1,
	0.4 hPa)
使用変数	ジオポテンシャル高度,気温,東西風,南北風,露点温度,
	雲水混合比

2.4 初期値の作成方法

ECMWF,気象庁の解析値からの初期値の作成では、GFSのモデル面、モデル格子に合わせてデータを内挿する必要がある.本研究では、このためのプログラムを作成し、GFS入力ファイル形式の初期値データを作成した.

2.4.1 概要

初期値の作成方法の手順は以下の通りである.

- 1. 緯度経度格子データを GFS の地形データの格子(ガウス格子)に合わせてスペクト ル法を用いて内挿する.モデル面データの場合は,各層,各格子点の気圧とジオポ テンシャル高度の値も求めて地形データの格子に合わせて内挿する.
- 2. GFS の地形データでの地表気圧を求め直す.
- 3. 求め直した地表気圧から,各格子点で,GFSの*σ-p*ハイブリッド座標系のモデル面 64層での気圧を求める.
- 4. GFS のモデル面に対して, 各格子点上で鉛直内挿する.

2.4.2 鉛直内挿

鉛直内挿には、3次のラグランジュ内挿を用いる.ただし、入力データ最下層より下層 の高度に対する気温と比湿については外挿する.また、地表より下層の高度のデータは内 挿および外挿には用いない.

ジオポテンシャル高度

入力データがモデル面データの場合,ジオポテンシャル高度 *z* は,静力学平衡の式から 次のように求める.

$$z_1 = z_s - \frac{R_d T_1}{g} (\ln p_1 - \ln p_s)$$
(2.16)

$$z_k = z_{k-1} - \frac{R_d(T_k + T_{k-1})}{2g} (\ln p_k - \ln p_{k-1}) \quad (k \ge 2)$$
(2.17)

ここで、添字kは下からk番目のモデル面を表し、 R_d は気体定数、gは重力加速度、 z_s は地表高度、Tは気温、pは気圧である.

地表気圧

地表気圧は、地表面高度より上層の入力データを用いて求める。静力学平衡の式から、 地表気圧 *p_s*は、

$$p_s = p_l \left[1 - \frac{\Gamma}{T_l} (z_s - z_l) \right]^{\frac{g}{R_d \Gamma}}$$
(2.18)

と求まる.ここで, T_l , z_l は最下層での気温とジオポテンシャル高度で, $p_s \ge p_k = p_l > p_{k+1}$.また, Γ は気温減率で $\Gamma = 0.0065$ K/m を用いた.

東西風、南北風、オゾン質量混合比、雲水混合比

東西風,南北風,オゾン質量混合比,雲水混合比については, $\ln p$ についての3次ラグランジュ補間で内挿する.すなわち,内挿点の気圧pについて $p_0 > p_1 \ge p > p_2 > p_3$ のとき,変数hは,

$$h = \sum_{k=0}^{3} L_k(p)h_k, \quad L_k(p) = \prod_{j=0}^{3} \prod_{j=0}^{(j \neq k)} \frac{\ln p - \ln p_j}{\ln p_k - \ln p_j}$$
(2.19)

3次内挿には、内挿する高度に対して上下各2層分が必要である。入力データの最上層直下 と、最下層もしくは地表に最も近い層の場合は、上下に1層しかとれないため線形内挿を行う。最上層直下、 $p_{k-1} \ge p > p_k = p_N$ 、もしくは、地表に最も近い層、 $p_s \ge p_{k-1} \ge p > p_k$ のとき、

$$h = h_{k-1} + \frac{h_k - h_{k-1}}{\ln p_k - \ln p_{k-1}} (\ln p - \ln p_{k-1})$$
(2.20)

最上層 (k = N) より上層,最下層もしくは地表面に最も近い層より低い場合は,定数で 外挿する.すなわち,

$$h = h_N \quad (p_N \ge p) \tag{2.21}$$

$$h = h_l \quad (p \ge p_l) \tag{2.22}$$

気温

入力データ最下層より下層,すなわち $p \ge p_l$ の範囲は,東西風と同様の内挿方法で求める.入力データ最下層,もしくは地表面に最も近い層より下層については,ECMWF (2013)の手法により,以下のように外挿する.

まず地表気温T_sを最下層の気温から求める.静力学平衡の式と状態方程式から,

$$\frac{dp}{dT}\frac{dT}{dz} = -\frac{pg}{R_d T} \tag{2.23}$$

*p*から*ps* まで積分して,

$$T = T_s e^y, \quad y = \frac{R_d \Gamma}{g} \ln \frac{p_s}{p} \tag{2.24}$$

最下層近傍では、 $y \ll 1$ ($p \simeq p_s$) より、

$$T \simeq T_s \left(1 + y + \frac{y^2}{2} + \frac{y^3}{6} \right)$$
 (2.25)

となる.したがって、地表気温 T_s は最下層の気温 T_l から、

$$T_s = T_l e^{-y} \simeq T_l \left(1 - \frac{R_d \Gamma}{g} \ln \frac{p_s}{p_l} \right)$$
(2.26)

と求まる. (2.26) で求めた T_s と (2.24) を用いて T を外挿する. このとき,気温減率 Γ は 次の値を用いる.

 $z_s < 2000 \, {
m m}$ のとき

標準大気の気温減率 $\Gamma = \Gamma_{st} = 0.0065 \, \text{K/m}$ を用いる.

 $2000 \mathbf{m} \le z_s \le 2500 \mathbf{m}$ のとき

$$T_0 = T_s + \Gamma_{st} z_s \tag{2.27}$$

 $T'_{0} = 0.002 \left[(2500 - z_{s})T_{0} + (z_{s} - 2000) \min(T_{0}, 298) \right]$ (2.28)

を用いて,

$$\Gamma = \frac{\max(T'_0 - T_s, 0)}{z_s}$$
(2.29)

 $z_s > 2500 \, {\rm m}$ のとき

$$T_0' = \min(T_0, 298) \tag{2.30}$$

を用いて, (2.29)から計算する.

比湿

入力データ最下層より上層の範囲は、東西風と同様の内挿方法で求める.入力データ最 下層、もしくは地表に最も近い層より下層については、最下層の相対湿度の値が一定とな るように外挿し、相対湿度から (2.24) で外挿した気温を用いて比湿を求める.

2.5 渦·環境場交換実験

2.5.1 実験設定

初期値交換実験で用いた初期値を熱帯低気圧の渦成分と環境場成分に分離し、環境場成 分に別の初期値の熱帯低気圧渦成分を埋め込むことで、初期環境場の違い、初期渦の違い が与える影響について調べる.実験設定は表 2.10 のとおりである.

表 2.10: 渦·環境場交換実験

使用モデル	the NCEP Global Forecast System
解像度	低解像度実験:T190L64(水平約 70 km,最上層 0.3 hPa)
	高解像度実験:T382L64(水平約35km,最上層0.3hPa)
初期値	第 2.5.2 節で詳述
境界值	NCEP-CFSR(SST 偏差は e-folding time 90 日で気候値に漸近)
対象事例	Parma:初期時刻 2009 年 9 月 30 日
	Lupit : 初期時刻 2009 年 10 月 20 日, 21 日

2.5.2 初期値の作成

初期値は、GFSモデル面の初期値から次のような手順で作成する。渦と環境場の分離は、急峻な地形による悪影響を防ぐために、モデル面上ではなく等圧面上で行う。

- 地表気圧から海面更正気圧を求め、各予報変数をモデル面から等圧面へ鉛直内挿する.鉛直内挿方法は、第2.4.2節で述べた方法で行う.
- ベストトラックデータでの熱帯低気圧位置を中心とした 40°×40°の範囲で 1°間隔の 作業領域格子を作成し、ガウス格子から作業領域格子に準双 3 次内挿 (Ritchie et al., 1995) する.
- 3. この作業領域で,等圧面の予報変数と海面更正気圧に対して,Kurihara et al. (1995) の渦分離スキームを適用し,渦成分と環境場成分を分離する.
- 4. 渦の交換,移動を行い作業領域での初期場を作成する.渦成分の中心位置は,渦成 分として用いた初期値の熱帯低気圧中心位置に合わせる.
- 5. 等気圧面上での各予報変数,海面更正気圧を作業領域格子からガウス格子へ準双3 次内挿する.
- 6. 海面更正気圧からモデル地形での地表気圧を求める. 各格子点上で, 求まった地表 気圧に対するモデル面の気圧を求め, 等圧面からモデル面に鉛直内挿する.

ここで,作業領域を十分大きくとれば,渦を除去するためのフィルターの影響は作業領域 内に限られ,作業領域の境界と元データは滑らかに接続する.渦成分と環境場成分の分離 は Kurihara et al. (1993, 1995) に基づき以下のような手順で行う.

図 2.3: 2009 年 9 月 5 日 12 UTC における台風第 12 号 Djuan の下層(850hPa 付近) での東西, 南北風への分離スキームの適用の例. (a) 解析場 h, (b) 基本場 h_B , (c) 擾乱場 h_D , (d) 環境場 h_E , (e) 非渦擾乱場 h_{nv} , (f) 渦擾乱場 h_{av} . フィルター領域決定の際に定義しなおした熱帯低気圧中心 は × 印で示し, (d)–(e) の実線はフィルター領域の境界を表す.単位はいずれも m/s.

概要

まず,解析場hを大規模場を表す基本場 h_B と,基本場からの偏差である擾乱場 h_D に分離する(図2.3a-2.3c).

$$h = h_B + h_D \tag{2.31}$$

擾乱場 h_D には,熱帯低気圧渦に伴う擾乱成分だけでなく,小スケールの擾乱成分も含まれている.擾乱場はさらに,渦成分 h_{av} と非渦擾乱成分 h_{nv} に分離できる(図 2.3c, 2.3e, 2.3f).

$$h_D = (h_D - h_{av}) + h_{av} = h_{nv} + h_{av}$$
(2.32)

渦成分は熱帯低気圧位置を中心としたある領域内(フィルター領域)でのみ存在し、領域 外の擾乱成分 h_D は全て非渦擾乱成分 h_{nv} であるとする.このとき、フィルター領域内の 擾乱成分の大部分は、渦成分 h_{av} であり、熱帯低気圧中心から離れるにつれ、渦成分の割 合は小さくなる.また、フィルター領域境界上では非渦成分 h_{nv} のみになる.

環境場成分 h_Eは、基本場成分と非渦擾乱成分の和として定義される(図 2.3d).

$$h_E = h_B + h_{nv} = h_B + (h_D - h_{av}) = h - h_{av}$$
(2.33)

したがって、フィルター領域の外側では環境場成分h_Eは、解析場hと完全に一致する.

基本場

基本場は東西,南北方向に隣接3点の平滑化フィルターをかけることで求める.

$$\bar{h}_{i,j} = h_{i,j} + K(h_{i+1,j} + h_{i-1,j} - 2h_{i,j})$$
(2.34)

ここで, \bar{h} は東西方向に平滑化をかけた値, $i \geq j$ は経度,緯度方向の格子点を表し,格 子間隔は1°である. Kは係数で,

$$K = \frac{1}{2} \left(1 - \cos \frac{2\pi}{m} \right)^{-1}$$
(2.35)

平滑化は11回繰り返して行い,係数*K*のパラメータ*m*を,2,3,4,2,5,6,7,2,8,9,2と変化させる.平滑化を繰り返す際,領域の東西端の値は固定する.同様の平滑化を,南北方向にも繰り返して行うことで,大規模成分のみを残した基本場*h*_Bを得る(図 2.3b).

$$h_{B\,i,j} = \bar{h}_{i,j} + K(\bar{h}_{i,j+1} + \bar{h}_{i,j-1} - 2\bar{h}_{i,j}) \tag{2.36}$$

この平滑化により,急なカットオフスケール無しに,小規模の波を効果的に除去すること ができる.

フィルター領域の決定

フィルター領域は,接線風の風速と動径方向の勾配を用いて次のように定める.接線風 の値は熱帯低気圧中心位置の正確さに強く依存する.本研究では,熱帯低気圧中心の定義 に海面更正気圧を用いているが,本スキーム適用に際しては接線風をより正確に決められ るように,接線風を基準にして熱帯低気圧中心を定める.

まず、中心を求めるための作業領域格子を作成する.中心の第一推定位置(ベストトラックの中心位置を用いる)に最も近い格子点を中心とした、7°×7°の領域を0.5°格子間隔で作成する.この領域内のある格子点を熱帯低気圧中心と仮定し、動径方向に0.2°間隔で6°まで、接線方向に15°間隔で24分割した各点での風速を双線形内挿により求め、接線風を計算する.中心からの距離ごとに平均接線風を計算し、最大平均接線風を求める.最大平均接線風を作業領域内の全ての格子点を中心とした場合について求め、その中で最大平均接線風が最も大きくなる格子点を、分離スキームで用いる熱帯低気圧の中心と定める.

次に、渦成分を分離するためのフィルター領域を決定する. 接線風を基準にして定めた 中心から、動径方向に 0.1°間隔で 12°まで、接線方向に 15°間隔で 24 分割した極座標を 作成し、接線風 ν_{tan} のプロファイルを求める(図 2.4b). このプロファイルについて、探 索開始半径(後述)から外側に向かって風速と勾配を求めていき、以下の条件のいずれか を満たしたときの半径を $r_f(\theta)$ とする.

- $\nu_{tan} < 6 \,\mathrm{ms}^{-1}$ かつ $-\frac{\partial \nu_{tan}}{\partial r} < 4 \times 10^{-6} \,\mathrm{s}^{-1}$ を 2 回満たす
- $\nu_{tan} < 3 \, {\rm m s}^{-1}$
- 探索最大半径に達する

図 2.4: 2009 年 9 月 5 日 12 UTC における台風第 12 号 Djuan のフィルター領域決定の例.(a)下 層(850 hPa 付近)での東西,南北風の擾乱成分(ベクトル)と擾乱成分の接線風(陰影).単位 はいずれも m/s. Djuan の中心は × 印で示し,実線はフィルター領域の境界を表す.(b)下層風 擾乱成分の北東,北西方向の接線風の動径方向のプロファイル.各プロファイルに対して決まる, r_f, r₀ をそれぞれ三角印,丸印で示す.

このように求めた, $r_f(\theta)$ に対して,フィルター領域の半径を $r_0(\theta) = 1.25 r_f(\theta)$ で定める. [r_f , 1.25 r_f]の範囲で ν_{tan} が負となる場合は,[r_f , 1.25 r_f]の範囲で最も内側の ν_{tan} が負になる半径を $r_0(\theta)$ とする(図 2.4b).

探索開始半径は,探索範囲に渦に伴う擾乱が含まれるように十分小さくとる必要がある が、中心付近の接線風速は熱帯低気圧中心の決め方に強く依存してしまうため、中心に過 度に近い位置から探索をはじめるのは適切ではない.したがって,探索開始半径は方向 θ ごとに,次のように定める.まず、平均軸対称接線風 $\bar{\nu}_{tan}$ が最大となる半径 \bar{r}_{max} を求め る.次に $\bar{\nu}_{tan}$ のプロファイルに対して、1.5 \bar{r}_{max} を探索開始半径としてフィルター領域の 判定を行い、平均軸対称接線風についての \bar{r}_{f} を求める.探索開始半径の範囲は、 \bar{r}_{max} と \bar{r}_{f} によって定まる半径、

$$r_a = a \,\bar{r}_{max}, \quad r_b = b \,\bar{r}_{max} + (1-b)\bar{r}_f$$
(2.37)

を用いると, $[1.1r_a, 1.1r_b]$ の範囲に存在するように決める. ここで, パラメータの値は a = 0.5, b = 0.75とする. r_a, r_b を用いて, 各方向 θ ごとの探索開始半径を次のように決 定する. まず, 最大接線風の半径 $r_{max}(\theta)$ を求める. このとき $r_{max}(\theta)$ が, $[r_a, r_b]$ の範囲 外にある場合は, $[r_a, r_b]$ 内での最大接線風の半径を求め, これを $r_{max}(\theta)$ と置き換える. 次に, $[r_{max}(\theta), r_b]$ の範囲で, $\nu_{tan}(r, \theta)$ が負になる点がある場合は, $r_{max}(\theta)$ を r_b で置き 換える. このようにして求めた $r_{max}(\theta)$ に対して, 探索開始半径を $r = 1.1r_{max}(\theta)$ とする. このとき探索開始半径は $[1.1r_a, 1.1r_b]$ の範囲に存在する(図 2.4b).

フィルターの適用

最後に、求めた渦領域内の擾乱成分 h_D にフィルターを適用し、渦擾乱成分 h_{av} と非渦 擾乱成分 h_{nv} に分離する.フィルター領域内で滑らかに変化し、かつ、領域境界上で外部 の非渦擾乱成分と連続的に接続するように、最適内挿法を用いて非渦擾乱成分を求める. 最適内挿法の概要は次のとおりである。格子点 $i = 1, \dots, N$ で,hの観測値 h_i^0 が得られたとする。このとき、値が未知の格子点pにおけるhの推定値 h_p^e を求めたい。 h_p^g を点pにおけるhの第一推定値, h_i^g を点iでの第一推定値とするとき、 h_p^e は、点pでの第一推測値を次のように修正することで得られる。

$$h_p^e = h_p^g + \sum_{i=1}^N w_{pi}(h_i^0 - h_i^g)$$
(2.38)

ここで, w_{pi} は,点*i*による点*p*への修正に対する重みである.ここで, $h_i^0 \ge h_i^g$ の誤差を それぞれ, δh_i^0 , δh_i^g とするとき, h_p^e の誤差 E_p は次のようにかける.

$$E_{p} = \delta h_{p}^{g} + \sum_{i=1}^{N} w_{pi} (\delta h_{i}^{0} - \delta h_{i}^{g})$$
(2.39)

今回の場合,求めたい場hは非渦擾乱成分 h_{nv} である.フィルター領域内では,渦擾乱成分が支配的であるから,非渦擾乱成分の第一推定値 h^g はゼロとする.さらに,フィルター境界上での擾乱成分はすべて非渦擾乱成分であるから, $h_p^0 = h_{D,p}$ とする.したがって,境界上の点を $i = 1, \dots, N$ としてとると, (2.38)から,

$$h_p^e = \sum_{i=1}^N w_{pi} h_i^0 \tag{2.40}$$

境界上でフィルター領域外と滑らかに接続するように、 $\delta h_i^p = 0$ とすると、(2.39)から、

$$E_p = \delta h_p^g - \sum_{i=1}^N w_{pi} \delta h_i^g \tag{2.41}$$

第一推定値の誤差の統計値が既知ならば、点pについての重み w_{pi} の組は、点pにおける 推定値誤差の二乗平均値 E_p^2 を最小化するように決定できる.すなわち、

$$\frac{\partial E_p^2}{\partial w_{pi}} = 0 \quad (i = 1, \cdots, N) \tag{2.42}$$

(2.39), (2.40)から, 次のN個の線形連立方程式を得る.

$$\sum_{j=1}^{N} w_{pj} \mu_{ij} = \mu_{ij} \quad (i = 1, \cdots, N)$$
(2.43)

ここで、 $\mu_{ij} = \delta h_i^g \delta h_j^g$ は、第一推定値の相関係数である. μ_{ij} は、2点*i*、*j*間の距離*d*に 依存し、標準的には、 $\mu_{ij} = \exp[-(d/D)^2]$ という形をとる.*D*は相関の減少スケールで、 Kurihara et al. (1995)で使用された値、D = 200 kmとした.フィルター領域内の格子点 *p*について、(2.43)を非負条件付き最小二乗法 (non-negative least square method) で解き、 (2.40) から点 *p* での、非渦擾乱成分の推定値を求める.本研究では、N = 24とし、中心 から接線方向に 24 分割した半径とフィルター境界との交点の擾乱成分の値を、格子点か ら線形内挿によって求め最適内挿の入力値 h^0 とする.

これにより、フィルター領域内では境界からの距離に応じて滑らかに減少し、フィル ター領域外では擾乱成分の値となるような、非渦擾乱成分 *h_{nv}* をもとめることができる (図 2.3e).

第3章 熱帯低気圧進路予報への初期値の 影響

熱帯低気圧の進路予報誤差に初期値の違いが与える影響について,NCEP,ECMWF, 気象庁の解析値を初期値とする初期値交換実験により調べる.本章では,2009年に西太 平洋で発生した全ての熱帯低気圧についての進路予報誤差の解析を行う.さらに,数値予 報センター間の予測に大きな違いが現れた台風第20号Lupitと第17号Parmaについて 各センターの予測と本実験の結果について詳細に解析する.

3.1 2009年に発生した熱帯低気圧についての解析

3.1.1 予報データの解析

初めに、現業数値予報センターの進路予測誤差について解析する、対象とする熱帯低 気圧は、初期値交換実験の実験対象である 2009 年に北西太平洋域で発生した 22 個の熱帯 低気圧のうち初期時刻 12 UTC の計 127 事例(102 初期時刻)である.図 3.1 は,NCEP, ECMWF, 気象庁の120時間予報までの平均進路予測誤差を示したものである. NCEPの データは、4、5、9月のデータに欠損があるため、ECMWF、気象庁に比べ大幅にサンプ ル数が少ない. ECMWFの予測精度は、初期時刻を除く全ての予報時間で最も精度がよ い. 例えば, ECMWF の 72 時間予報の予測誤差は, 気象庁の 48 時間予報の予測誤差と 同程度である.NCEPの予測はサンプル数が少ないものの,102時間予報までは気象庁よ りも精度がよい.図3.2は、72時間予報の転向前、転向中、転向後の各区分の進路予報誤 差を、ベストトラックの進路方向成分(AT)とその直交成分(CT)に分けてプロットし たものである. NCEP についてはサンプル数が少ないため, ECMWF と気象庁の比較を 行う、図の中心から離れた大外れ事例の数は、ECMWF に比べ気象庁の方が多く、72時 間で 500km 以上の誤差となる事例は、ECMWF が4事例であるのに対して、気象庁は16 事例であった.このうち、ECMWF、気象庁共に 500km 以上の誤差となった事例は1事 例である.転向前の熱帯低気圧では、気象庁の予測でCTが正、すなわち進行方向に対し て右側にずれる事例が ECMWF に比べ多く見られる.また,転向後の熱帯低気圧で AT が負、すなわち転向後に進行速度が遅くなるバイアスが、ECMWF、気象庁に共通して見 られる.

図 3.1: 2009 年の北西太平洋領域で発生した熱帯低気圧の 12 UTC を初期時刻とした 120 時間予報までの平均進路予報誤差(実線,左軸)とサンプル数(破線,右軸). NCEP のデータには 4, 5, 9 月を初期時刻とした熱帯低気圧は含まれていない.

図 3.2: (a) ECMWF, (b) JMA の 72 時間予報の進路予測誤差の分布図.縦軸に熱帯低気圧の 進行方向の誤差,横軸に進行方向に直交する誤差をとり,単位は km である.赤色は転向前,緑色 は転向中,青色は転向後の事例を示す.事例数を図の右下に示す.

3.1.2 初期値交換実験の結果

図 3.3 は、GFS を用いた初期値交換実験の 120 時間予報までの進路予測誤差を示したものである.初期時刻、及び低解像度実験の予報時間 108 時間以降を除き、GFS-ECMWFが最も精度がよい.図 3.1 では、ECMWF の予測精度が最もよかったことから、コントロールランである GFS-NCEP は、初期値を ECMWF の初期値に変えることで、進路予測が大きく改善したといえる.GFS-ECMWF の GFS-NCEP に対する改善率は、24、48、72、96、120 時間予報で、それぞれ、低解像度実験の場合、14 %、21 %、10 %、4 %、-12 %、高解像度実験の場合、18 %、28 %、8 %、18 %、0 % であった。ここで B に対する A の改善率は、

$$\frac{(A の誤差) - (B の誤差)}{(A の誤差)} \times 100$$
(3.1)

で定義する.また,T190からT382への高解像度化への影響は,進路予測誤差の改善に はほとんど寄与しておらず,高解像度実験の低解像度実験の位置誤差に対する改善率は, GFS-NCEP,GFS-ECMWF,GFS-JMAでそれぞれ,24時間予報の場合,2%,5%,3 %,72時間予報の場合,2%,-1%,-1%であった.GFS-ECMWF予測誤差のECMWF 予測誤差に対する改善率,GFS-JMA予測誤差のJMA予測誤差に対する改善率は、それ ぞれECMWF,気象庁に対する予報モデルとしてGFSを用いたことによる改善率と考え ることができる.高解像度実験の改善率はそれぞれ,24時間予報で-2%,-3%,72時間 予報で,-2%,8%であった.この値は,初期値の違いによる改善率と比べて小さく,全 事例での平均的な誤差の改善率で考えた場合,モデルの違いによる進路誤差への影響は小 さいと考えられる.

図 3.4 は、GFS-NCEP、GFS-ECMWF、GFS-JMA の 72 時間予報の進路予測誤差をプ ロットしたものである。GFS-NCEP、GFS-JMA で転向前に、CT が正、すなわち進行方 向に対して右側にずれる事例について、GFS-ECMWF では CT の値が減少しており、初 期値交換による改善が見られる。一方、転向後に AT が負になるスローバイアスを示す事 例は、いずれの初期値の場合も多く、初期値の交換での改善は小さい。また、GFS-JMA は、GFS-NCEP、GFS-ECMWF に比べ、図の中心から離れた誤差の大きな事例が多く見 られる。GFS-JMA に比べ、GFS-NCEP、GFS-ECMWF の平均予測誤差が小さいのは、 気象庁初期値から、NCEP、ECMWF 初期値への交換により、このような大外れ事例の 誤差が減少したためだと考えられる。

図 3.3: 2009年の北西太平洋領域で発生した熱帯低気圧の12 UTC を初期時刻とした(a)低解像 度実験,(b)高解像度実験のGFS による120時間予報までの平均進路予報誤差(実線,左軸)と サンプル数(破線,右軸).

図 3.4: (a, c, d) 低解像度実験, (b, d, f) 高解像度実験の(a, b) GFS-NCEP, (c, d) GFS-ECMWF, (e, f) GFS-JMA の 72 時間予報の進路予測誤差の分布図. 図 3.2 に同じ.

図 **3.5:** (a) 2009 年 10 月 20 日 12 UTC, (b) 2009 年 10 月 21 日 12 UTC を初期時刻とした Lupit の ECMWF, 気象庁, NCEP の 5 日進路予測, 及びベストトラックの進路. 12 UTC での位置に マーカー.

3.2 Lupit

3.2.1 予報データの解析

2009年10月20日12UTC, 10月21日12UTCを初期時刻とした, NCEP, ECMWF, 気象庁のLupitの5日進路予報を図3.5に示す。初期時刻10月20日12UTCの事例では、 いずれのセンターの予測も北への転向を予測しているものの, ECMWF, NCEPの予測 は転向のタイミングがベストトラック,気象庁の予測に比べ遅れており,また転向も弱く 西寄りの進路を予測している.一方で、気象庁の予測は、転向後の進路はベストラックの 進行方向に対して左側にずれているものの, ECMWF, NCEPの予測に比べると, 転向 のタイミング,転向後の速度はベストトラックの進路傾向を概ね予測している.また,初 期時刻 10月 21日 12 UTC の事例では, ECMWF, NCEP の予測は, 転向後のスローバイ アスが見られるものの、北への転向を予測しており、転向のタイミングもベストトラック に近い. 一方で, Yamaguchi et al. (2012) でも指摘されていたとおり, 気象庁の予測は北 への転向を予測できず、フィリピンに上陸する予測となっている。図 3.6 は、2009 年 10 月19日から10月23日の各日12UTCを初期時刻とした各センターの5日予報を示した ものである、ECMWF, NCEPの予測では、北への転向を予測できていたのは、10月20 日 12 UTC 以降の初期時刻である.10 月 21 日 12 UTC 以降の初期時刻では, ECMWF の 予測では転向後のスローバイアスが見られる一方,NCEPの予測では、初期時刻が新し いほどスローバイアスも小さくなっており、3つのセンターの中ではNCEPの予測が最も 誤差が小さい.気象庁の予測では、10月20日12UTCを初期時刻とした予測でNCEP、 ECMWFと異なり転向を予測しているが,翌日の10月21日12UTCを初期時刻とした予 測では,転向を予測できておらず日替わりが激しい.初期時刻が新しいほど,誤差が減少 している ECWMF, NCEP の予測とは異なった特徴である.

図 3.6: 2009 年 10 月 19 日から 10 月 23 日の各日 12 UTC を初期時刻とした(a) ECMWF, (b) 気象庁, (c) NCEP の Lupit の 5 日進路予測,及びベストトラックの進路. 12 UTC での位置にマーカー.

3.2.2 初期値交換実験の結果

図 3.7 は,GFS を用いた Lupit の初期値交換実験の結果である.初期時刻 10 月 20 日 12 UTC の場合,コントロール実験である GFS-NCEP は,いずれの解像度でも北への転 向が予測できていない.一方,GFS-ECMWF,GFS-JMA では北への転向が予測できて おり,初期値を NCEP 初期値から ECMWF,気象庁の初期値に変えることにより転向の 予測は改善した.また,初期時刻 10 月 21 日 12 UTC では,GFS-ECMWF,GFS-NCEP が転向を予測しており,GFS-JMA では転向が予測できていない.GFS-NCEP では転向 を予測できていたことから,北への転向を予測できなかった気象庁の予測(図 3.5b)は, 予報モデルを GFS に変えても予測は改善しなかったと考えられる.実験解像度や初期値 作成に用いた解析データの解像度,境界値などが異なるものの,この結果は、モデルの違 いは転向の予測にあまり影響しておらず,初期値の違いが重要であったことを示唆してい る.これは,初期値交換で転向予測が改善した Yamaguchi et al. (2012)の結果と整合的 である.

また,GFS-NCEP,GFS-ECMWFは高解像度実験では,スローバイアスは残るものの, 低解像度実験の場合に見られる転向後に進行方向に対して左側に進路がそれる誤差が改 善されている.高解像度化は,転向後の熱帯低気圧強度の維持に対して大きな効果がある (図 3.9).低解像度実験では,初期時刻10月21日12UTCのGFS-NCEP,GFS-ECMWF で予報時間後半に大幅な中心気圧の上昇が見られるが,高解像度実験では,中心気圧を維 持したまま北上している.転向する台風は,熱帯低気圧自身の流れで励起される非軸対称 風 (Chan et al., 2002) やモンスーンジャイアとの相互作用 (Carr and Elsberry, 1995; Wu et al., 2013) が進路の変化に影響することが指摘されており,この事例では,Lupitの渦 の強さが予測において正しく表現されることが転向,及び転向後の進路の予測に重要とな る可能性が考えられる.Lupitの初期渦の強度,構造の違いについては,第4.1節で考察 する.

図 3.8 は,2009 年 10 月 19 日から 10 月 23 日の各日 12 UTC を初期時刻とした5 日予報を 示したものである.GFS-NCEP,GFS-ECMWF は初期時刻が新しいほど転向の精度はよ くなっており,NCEP,ECMWF の予測(図 3.6)と共通の傾向である.また,GFS-JMA で 10 月 20 日 12 UTC で転向を予測していたのにも関わらず,翌日 10 月 21 日 12 UTC で は予測できていない点も気象庁の予測(図 3.6b)と共通である.低解像度実験の場合は, GFS-NCEP の初期時刻 10 月 23 日 12 UTC の場合を除き,転向した事例でも転向後に熱 帯低気圧が弱まる,もしくは再び西進する予測となっている.一方,高解像度実験では, 転向後の進路が低解像度実験に比べ大きく改善しており,特に,GFS-ECMWF では,10 月 22 日 12 UTC,10 月 23 日 12 UTC 初期時刻の事例で,ECMWF の予測(図 3.6a)で見 られたスローバイアスも大きく改善している.このように,10 月 21 日 12 UTC 以外の初 期時刻でも,高解像度化により転向後の進路予測が改善しており,Lupit の強度の維持が 重要である可能性がある.

図 **3.7:** (a, c) 低解像度実験, (b, d) 高解像度実験の(a, b) 2009 年 10 月 20 日 12 UTC, (c, d) 2009 年 10 月 21 日 12 UTC を初期時刻とした Lupit の GFS-ECMWF, GFS-JMA, GFS-NCEP の 5 日進路予測,及びベストトラックの進路. 12 UTC での位置にマーカー.

図 **3.8**: (a, c, e) 低解像度実験, (b, d, f) 高解像度実験の 2009 年 10 月 19 日から 10 月 23 日 の各日 12 UTC を初期時刻とした (a, b) GFS-NCEP, (c, d) GFS-ECMWF, (e, f) GFS-JMA の Lupit の 5 日進路予測,及びベストトラックの進路. 12 UTC での位置にマーカー.

図 **3.9:** (a, c) 低解像度実験, (b, d) 高解像度実験の(a, b) 2009 年 10 月 20 日 12 UTC, (c, d) 2009 年 10 月 21 日 12 UTC を初期時刻とした Lupit の GFS-NCEP(緑), GFS-ECMWF(青), GFS-JMA(赤), 及びベストトラック(黒)の中心気圧(単位は hPa).

図 3.10: ベストトラックデータの Lupit の移動速度(青)と ERA-Interim 再解析値から求めた指向流(緑)の(a)東西成分と(b)南北成分の時間変化.単位はいずれも m/s で,指向流については 12 時間の移動平均をかけている.黒線で示した時刻は北への転向時刻を表す.

3.2.3 指向流についての解析

熱帯低気圧の運動は、第一近似的には環境場の風(指向流)に従うことから、Lupitの 運動と指向流の関係の観点から予測進路の違いを考察する.ここで、指向流は熱帯低気 圧中心から半径 400km 内で平均した 850–300hPa の質量重み付き鉛直平均風で定義する (Wu et al., 2011, 2013).この指向流は、大規模場の環境風だけではなく、ベータジャイ アや非軸対称な非断熱加熱によって熱帯低気圧中心付近に励起される非軸対称風(Fiorino and Elsberry, 1989; Wu and Wang, 2000, 2001)を含んでいる.図3.10 は、ベストトラッ クデータから求めた Lupit の移動速度と、12 時間移動平均をかけた指向流の時間変化を 表したものである.転向時刻は、熱帯低気圧の前後6時間の運動方向が時計回りに40度 以上変化した時刻のうち、運動方向の変化量が最も大きい時刻で定義している.Lupit の 移動速度の時間変化は、指向流の速度の変化とよく一致しており、Lupit は指向流に移流 されて運動していることが分かる.また、Lupit の北への転向時刻付近で指向流も北向き に変わっており(図3.10b)、北への転向と転向後の運動は指向流でよく説明できる.

同様のLupitの移動速度と指向流の関係は,各センターの予測でも見られる(図3.11). 初期時刻10月20日12UTCの予測では,ECMWF,気象庁の予測は共に指向流が北向き に変化し,Lupitの北への転向の予測ができていたことと整合的である(図3.11b,3.11d). 転向後のLupitの進路予測も指向流の予測に関連しており,気象庁の予測では,北向きに 変わる時刻は解析値に比べ1日早いものの,転向後に北向きの指向流風速が増加してい る.一方,ECMWFの予測では,北向きの指向流は弱く,転向後,再び西寄りの弱い指 向流に変わっており,北への転向は予測しているものの,その後の予測精度が悪かった原 因であると考えられる.また,初期時刻10月21日12UTCの予測(図3.12)では,転向 を予測していたECMWFの予測では,指向流の北向きへの変化が予測されているのに対 して,気象庁の予測では,指向流は北向きに変化せず,Lupitの北への転向が予測できな い原因となっていると考えられる.

図 3.11: 2009 年 10 月 20 日 12 UTC を初期時刻とした(a, b) ECMWF, (c, d) 気象庁の予測 における Lupit の移動速度(青)と指向流(緑)の(a, c) 東西成分と(b, d) 南北成分の時間 変化.単位はいずれも m/s で,指向流については 12 時間の移動平均をかけている.黒線は北への 転向時刻を表す.

図 **3.12:** 2009 年 10 月 21 日 12 UTC を初期時刻とした Lupit の移動速度と指向流の時間変化.図 3.11 に同じ.

GFS を用いた初期値交換実験でも、指向流の時間発展は転向の予測と関連しており、指 向流の予測に初期値の違いが影響していることが分かる.北への転向を予測していた初期 時刻 10月 20日 12 UTC の GFS-ECMWF, GFS-JMA (図 3.13, 3.14) および, 初期時刻 10月21日12UTCのGFS-NCEP,GFS-ECMWF(図3.15,3.16)では、転向時刻付近で 指向流が北向きへ変化し、Lupitの移動速度の北向きへの変化によく対応している.一方, 初期時刻 10月 20日 12 UTC の GFS-NCEP,初期時刻 10月 21日 12 UTC の GFS-JMA で は、指向流が北向きへ変化していない、初期値の違いによる指向流の予測の違いは、予 報開始直後から現れている。例えば、初期時刻 10 月 21 日 12 UTC の GFS-ECMWF では、 指向流の東西成分がLupitの減速に先行して弱まっていき(図 3.16c),転向時刻前に指 向流が北向きに変化する.転向を予測できていた他の初期値の場合でも同様に、予報開 始直後から指向流は弱まっている。一方,転向を予測できていなかった初期時刻10月21 日 12 UTC の GFS-JMA (図 3.15e, 3.16e) では,指向流は予報開始後も 2-3m/s の北東 風で、あまり変化はなく、この指向流に伴って Lupit も西進している. 転向する台風は、 転向前の急激な移動速度低下と転向後の加速を伴うことが多く (Carr and Elsberry, 1995; Wu et al., 2013), Lupit の転向を予測していた初期値,初期時刻の指向流変化の特徴とよ く一致する. 初期値の違いは、予報開始直後から指向流の時間変化に影響していると考え られる.

図 3.13: 2009 年 10 月 20 日 12 UTC を初期時刻とした,低解像度実験での(a, b)GFS-NCEP, (c, d)GFS-ECMWF, (e, f)GFS-JMAのLupitの移動速度(青)と指向流(緑)の(a, c, e) 東西成分と(b, d, f)南北成分の時間変化.単位はいずれもm/sで,指向流については 12 時間 の移動平均をかけている.黒線は北への転向時刻を表す.

図 3.14: 2009 年 10 月 20 日 12 UTC を初期時刻とした,高解像度実験での Lupit の移動速度と指向流の時間変化.図 3.13 に同じ.

図 3.15: 2009 年 10 月 21 日 12 UTC を初期時刻とした,低解像度実験での Lupit の移動速度と指向流の時間変化.図 3.13 に同じ.

図 3.16: 2009 年 10 月 21 日 12 UTC を初期時刻とした,高解像度実験での Lupit の移動速度と指向流の時間変化.図 3.13 に同じ.

図 3.17: (a) 2009 年 9 月 29 日 12 UTC, (b) 2009 年 9 月 30 日 12 UTC を初期時刻とした Parma の ECMWF, 気象庁の 5 日進路予測, 及びベストトラックの進路. 12 UTC での位置にマーカー.

3.3 Parma

3.3.1 予報データの解析

2009年9月29日12 UTC,9月30日12 UTCを初期時刻とした,気象庁と ECMWFの Parmaの5日進路予報を図3.17に示す.初期時刻9月29日12 UTCの事例(図3.17a)では, 予報時間48時間までは ECMWF,気象庁の予測共に北進バイアスが見られる. ECMWF の予測では,予報時間48時間後以降は北進バイアスは弱まり進路が西寄りとなるため,72 時間予報の位置で比較すると,ECMWFの誤差が173kmであるのに対して,気象庁の誤差 は405kmである.また,初期時刻9月30日12 UTCの事例(図3.17b)では,Yamaguchi et al. (2012)で指摘されていたように,気象庁の予測にのみ,顕著な北進バイアスが見ら れ,72時間予報で534kmの誤差となっている.図3.18は,2009年9月28日から10月2 日の各日12 UTCを初期時刻とした ECMWF,気象庁の5日予報を示したものである.い ずれのセンターも,Parmaの発生直後の9月28日12 UTC,9月29日12 UTCを初期時刻 とする予測では,北進バイアスが見られ,初期時刻が新しいほど,北進バイアスは小さく なる.北進バイアスがほぼ見られなくなるのは,ECMWFの予測では9月30日12 UTC, 気象庁の予測では10月1日12 UTCであり,気象庁の予測の方が1日遅い.

3.3.2 初期値交換実験の結果

図 3.19 は、GFS を用いた Parma の初期値交換実験の結果である.初期時刻 9 月 29 日 12 UTC では、GFS-ECMWF では予報開始直後にやや北進バイアス傾向があるものの、継 続的な北進バイアスは見られず、いずれの初期値の場合でもフィリピンへの接近もしくは 上陸を予測している.GFS-NCEP、GFS-ECMWF、GFS-JMAの進路は予報時間 48 時間 後までは、進路の北進傾向にやや差があるものの、予報時間後半ではその差は小さくな り、初期値の違いは予測進路にそれほど大きな影響を与えていない.初期時刻 9 月 30 日

図 **3.18**: 2009 年 9 月 28 日から 10 月 2 日の各日 12 UTC を初期時刻とした(a) ECMWF, (b) 気 象庁の Parma の 5 日進路予測,及びベストトラックの進路. 12 UTC での位置にマーカー.

12 UTC では GFS-NCEP, GFS-ECMWF では北進バイアスは見られないが, GFS-JMA では継続的な北進バイアス傾向があり、72時間予報の誤差は203kmである。初期値となっ た気象庁の予測(図 3.17)と比較すると、初期時刻 9月 29日 12 UTC, 9月 30日 12 UTC いずれの場合も、気象庁予測で顕著であった北進バイアスが改善していることが分かる. 初期時刻9月29日12UTCの場合,気象庁予測で405kmあった72時間後の位置誤差は, 低解像度実験で118km, 高解像度実験で84kmに減少し, 改善率はそれぞれ84%, 79%で ある.また,初期時刻9月30日12UTCの場合,気象庁予測では534kmの位置誤差があっ たが、低解像度実験で203km、高解像度実験で294kmに減少し、改善率は62%、45%で あった. 解像度などの実験設定の違いはあるが、気象庁の予測に対する GFS-JMA の誤差 の改善は、予報モデルとして GFS を用いたことによる効果であると考えることができる. 進行方向に直交する誤差成分の改善率は、9月29日12UTC初期時刻の場合、低解像度 実験で 96 %,高解像度実験で 98 %であり、気象庁予測に見られた北進バイアスは GFS での実験により、ほぼ完全に改善されている.一方、9月30日12UTCの場合は、低解像 度実験で60%,高解像度実験で33%であり、誤差の大きさは改善されるものの、GFS-NCEP, GFS-ECMWF では見られない北進バイアス傾向が依然残っている. Yamaguchi et al. (2012)は、この事例の北進バイアスは初期値に鈍感であり、モデルの違いに伴う誤 差の影響を指摘しているが、本実験の結果は、モデルの違いに伴う誤差だけではなく、初 期値の違いによる影響も重要であることを示している.これについては、第4.2節でもう 一度議論する.

図 3.20 は、2009 年 9 月 28 日から 10 月 2 日までの各日 12 UTC を初期時刻とした初期値 交換実験の 5 日予報の予測進路を示したものである。GFS-NCEP では、この期間の全ての 初期時刻で北進バイアスは小さく、予測精度がよいことが分かる。また、GFS-ECMWF、 GFS-JMA でも、9 月 28 日 12 UTC、9 月 29 日 12 UTC 初期時刻の予報時間前半では北進 バイアス傾向があるものの、予報時間後半では小さくなり、ECMWF、気象庁の予測(図 3.18)と比べても、全ての初期時刻で北進バイアスが減少し、特に気象庁の予測に対する

図 **3.19**: (a, c) 低解像度実験, (b, d) 高解像度実験の(a, b) 2009年9月29日12UTC, (c, d) 2009年9月30日12UTCを初期時刻とした Parma の GFS-ECMWF, GFS-JMA, GFS-NCEP の5日進路予測,及びベストトラックの進路.12UTC での位置にマーカー.

改善率が大きい.

図 **3.20**: (a, c, e) 低解像度実験, (b, d, f) 高解像度実験の 2009 年 9 月 28 日から 10 月 2 日 の各日 12 UTC を初期時刻とした (a, b) GFS-NCEP, (c, d) GFS-ECMWF, (e, f) GFS-JMA の Parma の 5 日進路予測,及びベストトラックの進路. 12 UTC での位置にマーカー.

第4章 初期渦と初期環境場の違いが与え る影響

第3.2,第3.3節の解析では、Lupitの予測進路が初期値の違いによって影響を受けることが明らかになり、Parma についても初期時刻によっては初期値の違いの影響を受けていることが分かった.さらに、Lupitの場合は、解像度の違いによる熱帯低気圧渦の強度の維持が重要である可能性が示唆されており、初期値の熱帯低気圧渦の構造や強度の再現性が予測進路に影響する可能性が考えられる。本章では、初期値交換実験で用いた初期値を熱帯低気圧渦と環境場成分に分離し、相互に入れ替えた初期値からの進路予測実験を行い、初期渦、初期環境場の違いが予測進路に与える影響について調べる.

4.1 Lupit

まず,2009年10月20日12 UTC,10月21日12 UTC を初期時刻とする Lupit の結果 について解析する.図4.1は、初期値交換実験で用いた NCEP,ECMWF,気象庁の初 期値の軸対称接線風の鉛直断面図である.NCEP,ECMWFの初期値では、両初期時刻 で渦の構造,強度に大きな差は見られない.NCEPとECMWFの初期値を比較すると, ECMWF 初期値は、半径100km付近に軸対称接線風の最大風速半径があるが、NCEP初 期値では200km付近にあり、中心気圧も約20 hPa高い(図3.9).ECMWFの初期渦は, NCEPに比べ強く、よく発達した渦となっている.一方、気象庁の初期渦は、初期時刻10 月20日12 UTCと10月21日12 UTCで大きく異なる.いずれの初期時刻も200-300 km 付近に最大風速半径をもつ NCEPとよく似た構造であるが、初期時刻10月20日12 UTC の接線風風速は、初期時刻10月21日12 UTCよりも強く、中心気圧も約15 hPa低い(図 3.9).気象庁の初期値の中心気圧は、初期時刻10月20日12 UTCの値が、前後の初期時 刻に比べても15-20 hPa低く、強い渦となっている.気象庁は初期値を作成するデータ同 化の際に、擬似的な渦である台風ボーガスを擬似観測として投入しており、その影響によ るものであると考えられる.

図 4.2, 4.3 は初期時刻 2009 年 10 月 20 日 12 UTC, 図 4.4, 4.5 は初期時刻 2009 年 10 月 21 日 12 UTC の各初期値の環境場成分に, 渦成分を組み合わせた初期値を用いた GFS に よる 120 時間予報の予測進路及び中心気圧を示したものである. 添字 env は環境場成分, 添字 vrt は渦成分を表し, 例えば, 図 4.2a は, 環境場, 渦成分共に NCEP 初期値を用い る場合 (GFS-NCEP), 及び NCEP 初期値の環境場に ECMWF 初期値の渦成分を組み合 わせた初期値を用いた実験 (NCEPenv-ECMWFvrt)と気象庁初期値の渦成分を組み合 わせた初期値を用いた実験 (NCEPenv-JMAvrt)の結果を示している. まず, 初期値交 換実験では転向を予測できていなかった初期時刻 10 月 20 日 12 UTC の NCEP 初期値の

表 4.1:初期時刻(a) 2009 年 10 月 20 日 12 UTC, (b) 2009 年 10 月 21 日 12 UTC の環境場成分, 渦成分に用いた初期値の組み合わせと転向の予測の可否. ○ は転向を予測できている場合, × は 予測できていない場合を表す. 各組み合わせについて,低解像度実験/高解像度実験の場合の結果 を示している.

(a)12Z20OCT2009				(b)12Z21OCT2009			
渦成分							
環境場成分	NCEP	ECMWF	JMA	環境場成分	NCEP	ECMWF	JMA
NCEP	\times / \times	\times / \times	\times/\times	NCEP	0/0	0/0	\times / \times
ECMWF	\times/\bigcirc	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	ECMWF	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$	$\bigcirc \bigcirc$
JMA	\times/\bigcirc	\times/\bigcirc	$\bigcirc \bigcirc$	JMA	\times / \times	\times / \times	\times / \times

環境場成分を用いた場合を見る(図4.2a, 4.3a). この場合は,NCEP, ECMWF, 気象 庁いずれの初期値の渦成分を用いても,転向を予測することはできない.しかし,高解像 度実験の場合,気象庁の渦成分を用いた初期値では,転向は不十分であるものの,進行速 度が減少し,進行方向もGFS-NCEPに比べ北よりへ変化するなど,転向する熱帯低気圧 に共通する特徴が見られる.初期時刻10月20日12UTCの気象庁の初期値は,Lupitの 強度が他の初期時刻より強くなっており,強度がより強く予測される高解像度実験の場合 で,気象庁の初期渦の強度が転向の予測に何らかの影響を及ぼしている可能性がある.

転向を予測していた気象庁の環境場成分を用いた初期値の場合(図4.2e, 4.3e),実験 解像度によって異なる結果となった.高解像度実験では、いずれの渦成分を初期値に用い ても、北への転向が予測されている.すなわち、GFS-NCEPで転向を予測できなかった NCEP 初期値の渦成分を用いた場合でも、気象庁の初期値の環境場成分により、転向の予 測が向上する.しかし、低解像度実験では NCEP, ECMWF いずれの渦成分を用いても 転向せず、初期値の環境場成分の影響のみでは転向予測は向上しない.

10月21日12UTC初期時刻の場合は,転向を予測していなかった気象庁の初期値環境 場を用いた場合(図4.4e,4.5e),どの初期値の渦成分を用いても北への転向の予測は改善 していない.一方,転向を予測していたECMWFの初期値環境場成分を用いた場合(図 4.4c,4.5c)は北への転向を予測しており,転向を予測しなかった気象庁初期値の渦成分 を用いても転向が予測されている.この結果からは,気象庁初期値を用いた場合に転向が 予測できなかったのは,初期値の環境場成分の誤差が原因であったことが示唆される.し かし,転向を予測していたNCEPの初期値環境場成分を用いた場合(図4.4a,4.5a),気 象庁初期値の渦成分を用いても転向は予測されない.このように,環境場,渦成分の組み 合わせによって,転向の予測の可否は変化しており(表4.1),初期値の環境場成分,渦 成分どちらか一方の寄与ではなく,双方の再現性が重要となると考えられる.

図 4.1:初期値交換実験で用いた (a-c)初期時刻 2009 年 10 月 20 日 12 UTC, (d-f)初期時刻 2009 年 10 月 21 日 12 UTC の (a, d) NCEP, (b, e) ECMWF, (c, f)気象庁の初期値についての, Lupitの接線方向に平均した軸対称接線風(単位は m/s)の鉛直断面図.横軸は Lupit の中心(海面更正気圧の極小位置)からの距離を表す.正の接線風は低気圧性,負の接線風は高気圧性回転を表す.

図 4.2: 2009 年 10 月 20 日 12 UTC を初期時刻とした (a, b) NCEP 環境場成分, (c, d) ECMWF 環境場成分, (e, f) JMA 環境場成分に各センターの初期値の熱帯低気圧渦成分を組み合わせた初 期値からの低解像度実験における Lupit の 120 時間予報までの (a, c, e) 進路予測,及びベスト トラックの進路と (b, d, f) 中心気圧 (単位は hPa). a, c, e の 12 UTC での位置にマーカー. 凡例の NCEPenv-ECMWF vrt は,NCEP 初期値の環境場成分に ECMWF 初期値の熱帯低気圧成 分を組み合わせた初期値からの実験を表す. b, d, e の凡例はそれぞれ a, c, e に共通.

図 4.3: 2009 年 10 月 20 日 12 UTC を初期時刻とした高解像度実験の Lupit の進路予測,ベストトラックの進路及び中心気圧.図 4.2 に同じ.

図 4.4: 2009 年 10 月 21 日 12 UTC を初期時刻とした低解像度実験の Lupit 進路予測, ベストト ラックの進路及び中心気圧. 図 4.2 に同じ.

図 4.5: 2009 年 10 月 21 日 12 UTC を初期時刻とした高解像度実験の Lupit 進路予測, ベストト ラックの進路及び中心気圧. 図 4.2 に同じ.

4.2 Parma

図 4.6, 4.7 はそれぞれ,初期値交換実験に用いた初期時刻 2009 年 9 月 30 日 12 UTC の NCEP, ECMWF,気象庁の初期値についての軸対称接線風の鉛直断面図とポテンシャル 渦度の鉛直東西断面図である.軸対称接線風速は,気象庁初期値が最も強く,中心気圧も NCEP, ECMWF 初期値に比べ 5 hPa 程度低い(図 4.8, 4.9).ポテンシャル渦度の鉛直 断面図を見ると,気象庁初期値は 850 hPa 付近で最も強く,上層では西に傾いている.ま た,ポテンシャル渦度中心は,海面更正気圧極小点で定義した Parma の中心位置とほぼ 同じで,鉛直方向によく結合した構造をしており,熱帯低気圧の典型的な鉛直構造をして いる.これは,気象庁の初期値では台風ボーガスが投入されていることが影響していると 考えられる.一方,ECMWF 初期値は,600 hPa より下層の構造は気象庁初期値と似た構 造であるが,中層から上層の構造は異なっている.中上層の傾きは,気象庁初期値よりも 大きく,400 hPa 付近のポテンシャル渦度中心は Parma の中心から 200 km ほどずれてい る.NCEP 初期値は,ECMWF,気象庁の初期値と比べ,発達が弱く,600 hPa より下層 で Parma に伴う正のポテンシャル渦度があるが,中上層の構造ははっきりしない.

図4.8,4.9は、各初期値の環境場成分に、渦成分を組み合わせた初期値からのGFSを 用いた120時間予報の予測進路及び中心気圧を示したものである.高解像度実験の気象庁 環境場成分にNCEP 渦成分を組み合わせた初期値からの実験(図4.9e)の48時間以降の 進路を除いて、環境場成分に用いた初期値からの実験の進路と同じ進路をとっている.こ の結果は、図4.6,4.7のように初期値渦構造に違いがあるものの、進路予測には影響せず、 初期値環境場成分の再現性が重要であることを示唆している.ただし、中心気圧は初期値 渦が強いほど低下しており、初期渦は強度予測には大きく影響している.この結果から、 GFSを用いた初期値交換実験で見られたGFS-JMAの北進バイアス(図3.19)は、気象 庁初期値の大規模環境場の誤差に起因する指向流予測の差が影響していると考えられる.

図 4.6: 初期時刻 2009 年 9 月 30 日 12 UTC における (a) GFS-NCEP, (b) GFS-ECMWF, (c) GFS-JMA の Parma の接線方向に平均した軸対称接線風(単位は m/s)の鉛直断面図. 横軸は Parma の中心からの距離を示している. 正の接線風は低気圧性,負の接線風は高気圧性回転を表 す.

図 4.7: 初期時刻 2009 年 9 月 30 日 12 UTC における (a) GFS-NCEP, (b) GFS-ECMWF, (c) GFS-JMAの Parmaのポテンシャル渦度(単位は 10⁻⁶K m²kg⁻¹s⁻¹)の鉛直東西断面図. 横軸は, Parmaの中心位置(海面更正気圧極小点で定義)からの距離を表し,東側が正方向である.

図 4.8: 2009 年 9 月 30 日 12 UTC を初期時刻とした低解像度実験の Parma 進路予測, ベストト ラックの進路及び中心気圧. 図 4.2 に同じ.

図 4.9: 2009 年 9 月 30 日 12 UTC を初期時刻とした高解像度実験の Parma の進路予測,ベストトラックの進路及び中心気圧.図 4.2 に同じ.

第5章 結論

本研究では、NCEP, ECMWF, 気象庁の3つの異なる数値予報センターの解析値から 作成した初期値を用いて、NCEPの現業予報モデルGFSによる熱帯低気圧の進路予報実 験を行うことにより、初期値の違いが進路予測誤差に与える影響を調べた. さらに、現業 数値予報センターの進路予測結果, JMA-GSM を用いた Yamaguchi et al. (2012)の結果 との比較により、モデルの違いが進路予測に与える影響についても考察を行った.

第3章では、NCEP, ECMWF, 気象庁の進路予測, およびこれらの初期値を用いた初 期値交換実験の進路予測結果の解析を行った. 2009年に北西太平洋で発生した 22 個の熱 帯低気圧の平均進路予報誤差は,初期時刻を除いて,ECMWFの予測精度が最もよかっ た.72時間予報の予測誤差は,ECMWFに次いでNCEPの精度がよく,気象庁が最も悪 かった.個々の事例では気象庁の予測で転向前に進行方向に対して右側にずれる事例が, ECMWFに比べ多く見られた.また,気象庁の予測には,予測誤差が大きな大外れ事例 が多く,平均予測誤差が大きい一因となっていた.

GFSを用いた初期値交換実験の結果,NCEPの初期値を用いた場合に比べ,ECMWF の初期値を用いた場合は,低解像度(T190)実験,高解像度(T382)実験でそれぞれ,24 時間予報では14%,18%,72時間予報で4%,8%改善し,初期値交換により平均予測誤 差が改善されることが分かった.気象庁の初期値を用いた場合に比べ,NCEP,ECMWF の初期値を用いた場合では,特に大外れ事例の誤差が減少しており,平均進路予測誤差の 減少に寄与している.

次に、NCEP, ECMWF, 気象庁の進路予測に顕著な違いが見られた, 台風第20号 Lupit と第17号 Parma について, 詳しく解析を行った. 2009年10月20日12 UTC を初期時刻 とした Lupit の北への転向の予測では、NCEP の初期値を用いた場合に予測されなかった 北への転向が, 転向を予測していた気象庁の初期値を用いることで予測が改善した. 10 月21日12 UTC を初期時刻とした場合では、NCEP, ECMWF は転向を予測していたも のの, 気象庁は転向を予測できていなかった. 初期値交換実験の結果, NCEP, ECMWF の初期値を用いた場合は転向が予測されたのに対して, 気象庁の初期値を用いた場合は、 転向を予測できず, 気象庁の初期値の誤差が転向の予測ができなかった原因であることが 示唆される. この結果は, JMA-GSM を用いた Yamaguchi et al. (2012)の結果と整合的 である. 以上の結果は, この事例が初期値誤差に敏感な事例であることを示している. ま た, 低解像度実験に比べ, 高解像度実験の方が転向後の予測精度がよく, 高解像度化によ る強度予測精度の向上が転向後の進路予測に影響している可能性が示唆される. さらに, 熱帯低気圧環境場の風である指向流の予測精度と運動速度の関係について解析を行った. 転向を予測していた事例では, 指向流とLupit の運動速度の時間変化はよく一致しており, 初期値の改善が, 指向流予測に影響していたことが分かった. Parmaの予測では、気象庁の予測にのみ顕著な北進バイアスが見られた.初期値交換 実験の結果、9月29日12UTCを初期時刻とした場合、いずれの初期値を用いても北進 バイアスは見られず、初期値の違いは進路予測に影響しなかった.気象庁初期値を用いた 場合、気象庁予測に対して、進行方向に直交する誤差成分は、72時間予報の低解像度実 験で96%、高解像度実験で98%改善された.この北進バイアスの改善は、予報モデル としてGFSを用いたことによる影響であると考えられる.また、9月30日12UTCを初 期時刻とした場合、誤差の直交成分は、72時間予報の低解像度実験では60%、高解像度 実験では33%改善され、GFSを用いることにより北進バイアスは軽減された.しかし、 NCEP、ECMWFの初期値からのGFSによる実験では見られなかった北進バイアス傾向 が、気象庁の初期値からの実験では、依然として見られた.Yamaguchi et al. (2012)は、 この事例の北進バイアスは初期値に鈍感であると指摘しているが、モデルに伴う誤差だけ ではなく、初期値誤差による影響も重要であると考えられる.このように、気象庁予測の Parmaの北進バイアスは、GFSを用いることにより大きく改善されるものの、初期時刻 によってモデルの違いによる影響は変動することが明らかとなった.

第4章では、第3章の実験で用いた初期値を、環境場成分と渦成分に分離し、相互に組 み合わせた初期値からの実験を行い、初期環境場と初期渦の違いが進路予測に与える影響 を調べた.Lupitの場合、初期渦の強度に違いが見られたものの、初期値に用いた渦と環 境場の組み合わせにより、転向の予測が改善する場合としない場合があり、初期環境場成 分と初期渦成分、双方の再現性が重要である事例だと考えられる.一方、Parmaの場合、 初期渦の鉛直構造に大きな違いが見られたものの、予測進路は環境場成分として用いた初 期値を用いた場合と、ほぼ同じ進路となり、初期渦の違いは進路に影響しなかった.この 結果は、Parmaの事例では初期環境場の誤差が、北進バイアスに影響していることを示 しており、大規模場の環境風、すなわち指向流の再現性が重要であると考えられる.

最後に、熱帯低気圧の進路予測誤差研究に対する今後の展望を述べる.この実験では予 報モデルを統一しているため、予報モデルの違いの影響を排して、初期値の違いが進路 予報誤差にどの程度影響しているかを調べることができる.この手法は、事例ごとの予 測結果から、数値予報システムの改善につながる情報を引き出すのに有効な手法である. しかし、予報モデルの影響についての考察は、初期値作成に用いた解析値の水平、鉛直解 像度、実験の解像度などに大きな差があるため、単一モデルを用いた初期値交換実験の比 較から、全ての誤差を予報モデルの誤差とみなすには不十分である.この点については、 本研究の Parma や Lupit の事例で行ったように、別の予報モデルを用いた初期値交換実 験との比較が重要となる.また、SST は全て NCEP の解析値を用いているため、本研究 では SST の違いの影響は考慮されていない.今後、複数のモデルを用いて、SST を含め た初期値交換実験を進めていくことが必要である.

さらに、初期値交換実験の結果を用いて、初期値の違い、予報モデルの物理過程などの 違いに着目することで、予報誤差の原因から熱帯低気圧の運動メカニズムに対する知見を 得ることもできると考えられる.本研究は、指向流についての簡単な解析にとどまってい るが、こうしたメカニズムについてもさらに解析を進めることで運動メカニズムを明らか にしていくことが期待される.

謝辞

本研究を進めるにあたって数多くの方々のご指導を頂きました.

指導教員である榎本剛准教授には、2年間にわたり熱心な議論、ご指導をいただきました。また、海外派遣の機会や研究会での発表など、学外での研究活動を積極的に勧めていただき、貴重な経験を得ることができました。向川均教授には、気象学に関する議論や計算機に関する助言などをいただき、研究テーマに限らず、様々な知識と考え方を深めることができました。研究室の皆様にも研究生活を進める上で大変お世話になりました。

本研究で使用した全球数値モデル GFS の移植作業は,京都大学防災研究所「組織的な 若手研究者等海外派遣プログラム」の支援を受けて,2012年7月から8月にかけて1ヶ月 間,米国メリーランド大学大気海洋科学部に滞在して行ったものです.現地での受け入れ 先となっていただいたメリーランド大学の三好建正准教授(現理化学研究所計算科学機 構グループリーダー)には,GFSの移植について助言をいただき,1ヶ月の滞在生活でも 大変お世話になりました.NCEPの太田洋一郎氏(現気象庁数値予報課)には,GFSの 移植,使用方法について大変丁寧な助言,ご指導をいただきました.同時期に滞在されて いた筑波大学大学院の近藤圭一氏には生活面で大変お世話になりました.数値モデルの扱 い,海外滞在ともに初めてでしたが,貴重な経験を積むことができ,帰国後の私生活,研 究生活においても大変意義あるものになりました.滞在中,お世話になった皆様に心から 御礼申し上げます.

最後に、学部時代を含め6年間、学生生活を支えてくれた家族、友人に感謝いたします.

参考文献

- Carr, L. E. and R. L. Elsberry, 1990: Observational Evidence for Predictions of Tropical Cyclone Propagation Relative to Environmental Steering. J. Atmos. Sci., 47(4), 542– 546.
- Carr, L. E. and R. L. Elsberry, 1995: Monsoonal Interactions Leading to Sudden Tropical Cyclone Track Changes. Mon. Weather Rev., 123(2), 265–290.
- Carr, L. E. and R. L. Elsberry, 2000a: Dynamical Tropical Cyclone Track Forecast Errors. Part I: Tropical Region Error Sources. *Weather Forecast.*, **15**(6), 641–661.
- Carr, L. E. and R. L. Elsberry, 2000b: Dynamical Tropical Cyclone Track Forecast Errors. Part II: Midlatitude Circulation Influences. *Weather Forecast.*, **15**(6), 662–681.
- Chan, J. C. L., F. M. F. Ko, and Y. M. Lei, 2002: Relationship between Potential Vorticity Tendency and Tropical Cyclone Motion. J. Atmos. Sci., 59(8), 1317–1336.
- Chan, J. C. L. and W. M. Gray, 1982: Tropical Cyclone Movement and Surrounding Flow Relationships. Mon. Weather Rev., 110(10), 1354–1374.
- Chan, J. C. L. and R. T. Williams, 1987: Analytical and Numerical Studies of the Beta-Effect in Tropical Cyclone Motion. Part I: Zero Mean Flow. J. Atmos. Sci., 44(9), 1257–1265.
- Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isaksen, P. Kå llberg, M. Köhler, M. Matricardi, A. P. McNally, B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137(656), 553–597.
- ECMWF, 2013: IFS Documentation Cy38r1 Part III: Dynamics and Numerical Procedures. Technical report, ECMWF.
- Fiorino, M. and R. L. Elsberry, 1989: Some Aspects of Vortex Structure Related to Tropical Cyclone Motion. J. Atmos. Sci., 46(7), 975–990.

- George, J. E. and W. M. Gray, 1976: Tropical Cyclone Motion and Surrounding Parameter Relationships. J. Appl. Meteorol., 15(12), 1252–1264.
- Holland, G. J., 1984: Tropical Cyclone Motion. A Comparison of Theory and Observation. J. Atmos. Sci., 41(1), 68–75.
- Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An Initialization Scheme of Hurricane Models by Vortex Specification. *Mon. Weather Rev.*, **121**(7), 2030–2045.
- Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL Hurricane Prediction System. Mon. Weather Rev., 123(9), 2791–2801.
- Marchok, T. P., 2002: How the NCEP Tropical Cyclone Tracker Works. in 25th Conference on Hurricanes and Tropical Meteorology, San Diego, CA, USA, Amer. Meteor. Soc.
- Ritchie, H., C. Temperton, A. Simmons, M. Hortal, T. Davies, D. Dent, and M. Hamrud, 1995: Implementation of the Semi-Lagrangian Method in a High-Resolution Version of the ECMWF Forecast Model. *Mon. Weather Rev.*, **123**(2), 489–514.
- Saha, S., S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y.-T. Hou, H.-Y. Chuang, H.-M. H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. Van Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. Van Den Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J.-K. Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C.-Z. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R. W. Reynolds, G. Rutledge, and M. Goldberg, 2010: The NCEP Climate Forecast System Reanalysis. *Bull. Amer. Meteorol. Soc.*, 91(8), 1015–1057.
- Van der Grijn, G., 2002: Tropical Cyclone Forecasting at ECMWF: new products and validation. *ECMWF Tech. Memo.* 386, ECMWF.
- Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of Asymmetric Latent Heating on Typhoon Movement Crossing Taiwan: The Case of Morakot (2009) with Extreme Rainfall. J. Atmos. Sci., 69(11), 3172–3196.
- Wang, C.-C., Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010). J. Geophys. Res. Atmos., 118(8), 3292–3308.
- Wu, L., H. Zong, and J. Liang, 2011: Observational Analysis of Sudden Tropical Cyclone Track Changes in the Vicinity of the East China Sea. J. Atmos. Sci., 68(12), 3012–3031.
- Wu, L., Z. Ni, J. Duan, and H. Zong, 2013: Sudden Tropical Cyclone Track Changes over the Western North Pacific: A Composite Study. Mon. Weather Rev., 141(8), 2597–2610.

- Wu, L. and B. Wang, 2000: A Potential Vorticity Tendency Diagnostic Approach for Tropical Cyclone Motion. Mon. Weather Rev., 128(6), 1899–1911.
- Wu, L. and B. Wang, 2001: Effects of Convective Heating on Movement and Vertical Coupling of Tropical Cyclones: A Numerical Study. J. Atmos. Sci., 58(23), 3639–3649.
- Yamaguchi, M., R. Sakai, M. Kyoda, T. Komori, and T. Kadowaki, 2009: Typhoon Ensemble Prediction System Developed at the Japan Meteorological Agency. Mon. Weather Rev., 137(8), 2592–2604.
- Yamaguchi, M., T. Nakazawa, and K. Aonashi, 2012: Tropical Cyclone Track Forecasts using JMA Model with ECMWF and JMA Initial Conditions. *Geophys. Res. Lett.*, 39, L09801, doi:10.1029/2012GL051473.
- 山口宗彦・酒井亮太, 2004: 熱帯低気圧進路予報の国際比較. 平成 16 年度数値予報課報告・ 別冊第 50 号,気象庁予報部, 39-42 頁.
- 梅津浩典・森安聡嗣, 2013: WGNE 熱帯低気圧検証. 平成 25 年度数値予報課報告・別冊第 59 号, 気象庁予報部, 98–111 頁.