アンサンブル同化データを用いた爆弾低気圧の予測精度研究 吉田 聡(JAMSTEC・地球シミュレータセンター)・榎本 剛(京大・防災研)

1. はじめに

爆弾低気圧は寒候期に発生する気象災害 の要因の一つであり、防災上、その正確な予 測が求められている。しかしながら、これま で、爆弾低気圧の予測精度に関する研究は事 例解析的なものが多く、統計的な研究はあま りなされていない。

一方、爆弾低気圧の発達メカニズムについ てはいくつかの研究がなされている。

Yoshida and Asuma (2004)では日本付近で発 達する爆弾低気圧を日本海上で発達する OJ タイプと太平洋上で発達する PO タイプに分 類し、急激な発達をもたらす要因が、OJ タ イプでは上層の渦度移流、PO タイプでは低 気圧中心付近での凝結加熱であることを示 した。また、この違いは爆弾低気圧が発達す る環境場に依存していることを示した。この ことは、爆弾低気圧を予測するに当たり、発 達環境に伴う発達メカニズムの違いを考慮 する必要を示唆している。

最近では、アンサンブル同化手法を用いた 再解析データ(ALERA, Miyoshi et al. 2007) やTHORPEX のTIGGE データベースなど、 日々のアンサンブル予報・解析データを研究 に利用できるようになっている。これらのデ ータからはモデルバイアスや初期値の不確 定性など予報誤差情報を抽出することが可 能であり、予測可能性研究を進める貴重なデ ータとなっている。

本研究では、ALERA を用いて、日本付近 で発達した爆弾低気圧の予測誤差を低気圧 タイプに対して解析し、発達メカニズムとの 対応を調査した。

2. データと解析手法

用いたデータは海洋研究開発機構、気象庁、 千葉科学大の共同研究で作成された実験的 アンサンブル大気再解析データ(ALERA) である。このデータは解像度T159L48の大 気大循環モデルAFESの40メンバーアンサ ンブルとLETKFを用いた再解析データで、 2005年5月1日から2007年1月10日まで、 解析値と第一推定値それぞれのアンサンブ ル平均とアンサンブルスプレッド(40メン バーの標準偏差)が6時間毎、40メンバー それぞれの解析値が1日毎に保存されてい る。出力変数は海面気圧、気温、風速、ジオ ポテンシャル高度、湿数である。

本研究ではモデルの予報バイアスの指標 としてインクリメント(解析値と第一推定値 の差)、初期値の不確定性の指標として解 析・第一推定値スプレッドを用いる。スプレ ッドは観測密度の影響を除去し、現象に伴っ た誤差を抽出するため、各格子点での2005 年6月1日から2006年5月31日の1年間で 算出した標準偏差で規格化した値を用いる。 図1は2007年1月7日00UTCの海面気圧第 一推定値スプレッドと規格化したスプレッ ドである。規格化すると観測密度が多い陸上

図 1. 2007 年 1 月 7 日 00UTC の海面気圧解析値 (hPa, コンター)と第一推定値スプレッド(hPa、 色). (左) 規格化前, (右) 規格化後.

でのスプレッドが大きくなり、現象に伴う誤 差が現れている。

低気圧の抽出には解析アンサンブル平均 の海面気圧を用いた。11月から3月の寒候 期に日本付近において、6時間毎の海面気圧 極小値を低気圧として nearest-neighbor 法で 追跡した。爆弾低気圧はそのうち発達率

(CDR)

Cyclone deepening rate (CDR)

$$= \left[\frac{p(t-6) - p(t)}{6}\right] \left[\frac{\sin 60^{\circ}}{\sin \frac{\phi(t-6) + \phi(t)}{2}}\right]$$

が1以上になったものと定義した。ここで、 *p*は中心気圧 (hPa)、*q*は中心緯度(°)、*t*は時 刻(時間)である。爆弾低気圧は Yoshida and Asuma (2004) に習い、最大発達率が日本海、 またはオホーツク海上だった低気圧を OJ タイ プ、太平洋上だった低気圧を PO タイプに分類 し、急発達時の低気圧中心に相対的なコンポジ ット解析を行った。

予測精度と発達メカニズムとの関係を解析 するため Zwack-Okossi (Z-O)発達方程式を用 いた(Zwack and Okossi 1986; Lupo et al. 1992)。 この方程式を用いて、925hPaの地衡風渦度の 時間変化率に対する渦度移流項、温度移流項、 潜熱加熱項、断熱加熱項それぞれの寄与率を診 断した。

3. 結果

本稿では OJ タイプで CDR が 1.0 以上、PO タイプで CDR が 1.4 以上の爆弾低気圧につい ての解析結果を示す。図 2 は OJ タイプと PO タイプの急発達時における海面気圧とそのイ ンクリメントおよび解析スプレッドの合成図 である。OJ タイプは低気圧の北側でインクリ メントが正、南側で負になっている。これはモ デルが低気圧を北よりに予測する傾向がある

ことを示している。上層のジオポテンシャル高

図 2. 海面気圧解析アンサンブル平均 (hPa, 細 コンター), インクリメント (hPa, 上段カラー), 第一推定値規格化スプレッド (hPa, 下段カラ ー)の急発達時コンポジット. (a) (c) 0J タイ プ, (b) (d) P0 タイプ. 太実線, 太破線は他の カテゴリに対して 95%, 90%有意な差の領域. 度についても同様の解析を行い、この傾向は上 層トラフをより深く予測する傾向と対応して

いた。また、海面気圧のスプレッドは低気圧の 南西象限で大きく、上層の正渦度付近と下層の 寒冷前線付近でも大きい傾向が見られた。一方、 POタイプでは、低気圧の中心から南側でイン クリメントが負になり、低気圧位置の予測精度 はよいが、その発達強度を過小評価する傾向を 示している。さらに通常の低気圧のインクリメ ントとスプレッド分布を比較したところ、これ ら OJ タイプ、PO タイプそれぞれに特徴的な 誤差分布は通常の低気圧でも同様に現れる一 方で、通常の低気圧の予測誤差の大きさは爆弾 低気圧に比べて大幅に小さく、急発達する低気 圧の方が予測誤差が大きいことがわかった。

この OJ タイプと PO タイプの予測精度の違 いの原因を明らかにするため、Z-O 方程式各項 のインクリメントとアンサンブルスプレッド

を算出した。図3、図4はOJタイプ、POタ イプそれぞれが急発達した時の各項とそのイ ンクリメントの合成図である。OJ タイプでは 上空の渦度移流と断熱加熱による渦度強化が 低気圧の北側で過大になる傾向を示し、予測し た低気圧が観測よりも北側に位置し、上空のト ラフが深すぎるという結果と整合的であった。 一方、PO タイプでは、上層の渦度移流に目立 ったインクリメントは見られなかったが、降水 形成に伴う潜熱加熱のインクリメントが低気 圧中心付近で大きい一方、断熱加熱のインクリ メントはそれと逆符号の結果を示している。こ れらは、潜熱加熱の過小評価が低気圧発達の過 小評価につながっていることを示している。こ れは過去の統計的研究で示されている、OJ タ イプは上層の渦度移流が主な発達要因であり、 PO タイプは中心付近での潜熱加熱が重要な発 達要因であるという結果と整合的であった。つ まり、低気圧を急発達させる主要因の予測精度 が低気圧発達の予測精度につながっているこ とが示唆している。

さらに、アンサンブルスプレッドに関して各 項を実際の渦度発達率のアンサンブルスプレ ッドで規格化し、各項の相対的な不確定性を解 析した(図5、6)。この解析は実際に低気圧 予測精度の改善を図る際にどの過程を精緻化 するべきかという指標を得られる。この結果、 OJ タイプ、PO タイプともに上層の渦度移流の 不確定性は他の項に比べて非常に小さいこと をわかった。これはモデルバイアスを改善すれ ば、現状の観測網でも予測精度が向上すること を意味している。一方、OJ タイプでは低気圧 南西方向に位置する断熱加熱、太平洋型では低 気圧中心および南象限での潜熱加熱と断熱加 熱の不確定性が相対的に大きかった。これは、 これらの過程が初期値の誤差に敏感であり、よ り正確な初期値を得ること、つまり、急発達直 前の低気圧南西域や中心付近での密な観測が 予測精度の向上に必要であることを示唆して いる。

4. まとめ

アンサンブル再解析データを用いて、日本付 近で発達した爆弾低気圧の予測精度を解析し

図3.0JタイプのZ-0方程式解析値(細コンタ ー)とインクリメント(カラー).(a) 渦度移流 項,(b) 温度移流項,(c) 潜熱加熱項,(d) 断 熱加熱項.太実線,太破線は図2と同様.

図4. P0 タイプで図3と同様.

た。インクリメントとスプレッドの解析により、 低気圧の発達環境によって、予測可能性を左右 するメカニズムが異なること、より急激な発達 をする低気圧ほど予測誤差も大きくなること が明らかになり、今後の爆弾低気圧の予測精度 向上に必要なモデルおよび観測の改良に必要 な指標となると考えられる。

図 5.0Jタイプの Z-0 方程式解析値(細コンタ ー)とスプレッド(カラー).(a) 渦度移流項, (b) 温度移流項,(c) 潜熱加熱項,(d) 断熱加 熱項.太実線,太破線は図2と同様.

図6. P0タイプで図5と同様.

謝辞

本研究は文部科学省科学研究費補助金若手(B) 21740348の助成を受けた。

参考文献

Lupo, A., P. Smith, and P. Zwack, 1992: A diagnosis of the explosive development of two extratropical cyclones. *Mon. Wea. Rev.*, **120**, 1490–1523.

Miyoshi, T., S. Yamane, and T. Enomoto, 2007: The AFES-LETKF experimental ensemble reanalysis: ALERA. *SOLA*, **3**, 45–48.

Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region. *Mon. Wea. Rev.*, **132**, 1121–1142.

Zwack, P. and B. Okossi, 1986: A new method for solving the quasi-geostrophic omega equation by incorporating surface pressure tendency data. *Mon. Wea. Rev.*, **114**, 655–666.