JRA-55長期再解析

~進行状況とプロダクトの紹介~

*安井壯一郎¹・大野木和敏¹・海老田綾貴²・原田やよい¹・古林慎哉¹・太田行哉¹・小野田浩克¹・守谷昌己⁴ 隈部良司⁵・釜堀弘隆³・宮岡健吾¹・高橋清利⁶・小林ちあき³・遠藤洋和³・相馬求¹・及川義教¹・石水尊久⁷

1 気象庁気候情報課、2 気象庁地球環境業務課、3 気象研究所気候研究部、4 気象庁数値予報課
 5 長崎海洋気象台、6 前橋地方気象台、7 気象庁環境気象管理官付

1.はじめに

現在、気象庁ではJRA-25に続く長期再解析として、最新の予報モデルおよびデータ同化システムを用いて、1958年から2012年の55年間を対象としたJRA-55長期再解析を実施している。JRA-25では、衛星観測データの利用が可能になった1979年からを対象期間としていたが、JRA-55では、高層ゾンデ観測の規格が統一された1958年まで遡り、これ以降に利用可能な観測データをできるだけ取り入れている。

二十世紀後半をカバーした長期間の解析が可能 になったため、気候監視や事例解析のみならず、 地球温暖化の把握や異常気象との関連、数十年ス ケールの気候変動の解明など、幅広い分野の基盤 データとなることが期待される。まず、前半の第 2、3章でJRA-55の概要や進行状況、プロダクト の品質について報告する。

熱帯の降水活動に伴う潜熱加熱は、南北方向の ハドレー循環や東西方向のウォーカー循環といっ た大気循環に対する駆動源としての役割を持つこ とが知られているが、近年になって行われた観測 によって詳細な加熱構造が明らかになり、加熱の 鉛直構造とその役割が重要な研究対象となってい る。熱帯降水域の特別観測プロジェクトのゾンデ 観測はもとより、熱帯降水観測計画(TRMM)等 による衛星観測の高度化に伴い、潜熱の4次元構 造を推定した詳細なデータを利用することが可能 になってきた(Tao et al. 1993, 2000, Shige et al. 2004, 2007)。

また、主要センターが開発した再解析データに よる調査も盛んに行われており、加熱に対する大 気応答の理解や、現業モデルの降水過程の改良に つながっている。そこで後半の第4章では、JRA-55の加熱データについて他再解析データとの比較 や衛星観測データによる検証を行った。

2. JRA-55 の概要

JRA-55(Ebita et al. 2011)の予報モデルとデー タ同化システムの仕様について、JRA-25(Onogi et al. 2007)との主な変更点を表1に示す。

JRA-55は2009年12月当時の気象庁予報モデル をベースにしている。モデル解像度は Tr 319L60 で、格子間隔 55km に相当し、最上層は 0.1hPa ま で計算している。データ同化は4次元変分法を導 入しており、1979年以前の衛星が少ないか存在し ない時代を対象とした4次元変分法による再解析 は JRA-55 が世界初であり、再解析の性能向上が 期待される。物理過程は、2004年12月に現業で 導入された新しい長波放射スキームなど、いくつ かの改良がなされている。JRA-25で与えた温室効 果ガスは CO₂ が一定値(375ppmv) であったのに 対し、JRA-55では6種類の温室効果ガスの変動を 取り入れることで、温室効果ガスの増加による温 暖化シグナルの再現を考慮している。その他の境 界条件についても時間的空間的に性能が向上して いる。

現在、気象庁気候情報課ではJRA-55の計算を実 行中である。2012年11月20日の時点で約90%の 計算を終えている。JRA-55の計算は2013年3月 を目途に完了し、2013年秋にJRA-55プロダクト を公開する予定である。

次に、JRA-55 プロジェクトの全体像を紹介す る。JRA-55 と並行して 2 つのサブセットの計算を 実施している。

• JRA-55C

JRA-55 は利用可能な観測データをすべて用 いて実行されているため、観測システムの変 遷によりプロダクトの品質が変動するのは避

		JRA-25	JRA-55			
期間		1979~2004(26年)	1958~2012(55年)			
気象庁予報モデル		2004年3月当時	2009年12月当時			
解像度		T106L40	T _L 319L60			
		水平 110km、最上層 0.4hPa	水平 55km、最上層 0.1hPa			
時間積分		オイラー法	セミラグランジアン法			
データ同化		3次元変分法	4 次元変分法			
			(T106 インナーモデル)			
境界条件	温室効果ガス	CO ₂ (375ppmv一定)	CO ₂ 、CH ₄ 、N ₂ O、CFC-11、CFC-12、HCFC-22			
			(経年変化を考慮、by CMIP5 他)			
	オゾン	3次元日別値	3次元月別気候値(~1978)			
		by MRI-CTM (T42L45)	3次元日別値(1979~)			
			by MRI-CTM (T42L68)			
エアロゾル		海陸別年平均値気候値	光学的厚さ:			
			2次元月別気候値			
			光学的特性・鉛直プロファイル:			
			海陸別年平均値気候値			
	海面水温	COBE v1.2 (~2006.02)	COBE v1.5			
		" v1.5 (2006.03~)	(1度格子)			
		(1度格子)				

表 1: JRA-25 および JRA-55 の予報モデルとデータ同化システムの仕様

けられない。気候学的な視点から長期間の均 質性を重視した再解析を作成するため、時代 変遷の激しい衛星データを排除し、従来型観 測データである SYNOP、SHIP、BUOY(地 上、海洋気象観測データ)、TEMP、PILOT (高層気象観測データWindProfilerを含む)、 熱帯低気圧周辺風をデータ同化に用いた再 解析 JRA-55Cを実施している。

• JRA-55AMIP

JRA-55で用いた予報モデルに境界条件のみ を与え、すべての観測データを使用しない AMIP タイプ実験を実施している。JRA-55 を利用する際、予報モデルのバイアスよる 誤差特性を知ることができる。

3. JRA-55 の初期結果

JRA-25の主な問題点として、成層圏の気温バイ アスやアマゾンの乾燥化が挙げられる。まず、こ れらの問題点に着目し、JRA-55の品質について報 告する。

図1は1981年1月の全球平均気温バイアスの 鉛直プロファイルである。JRA-25では下部成層圏

図 1: 1981 年 1 月の全球平均気温バイアス [K] の鉛直 プロファイル。点線はラジオゾンデと JRA-25(黒)お よび JRA-55(赤)の解析値の差。実線はラジオゾンデ と第一推定値の差。

に顕著な低温バイアス、上部成層圏に高温バイア スがみられる。これは JRA-25 で使用された予報 モデルの放射スキームによる系統誤差のためであ るが、JRA-55 で導入された新しい長波放射スキー

図 2: 熱帯降水量バイアスの経度-時間断面図。(a) は GPCP 降水量に対する JRA-25 の降水量バイアス。(b) は GPCP 降水量に対する JRA-55 の降水量バイアス。

ムにより、下部成層圏のバイアスは大幅に軽減されている。

熱帯降水量の再現性を評価するために、熱帯域の 経度 - 時間断面において GPCP(Adler et al. 2003) に対する降水量バイアスをとった結果を図2に示 す。JRA-25ではアマゾン域にあたる60°Wで乾燥 バイアスがみられる。これは同化に使用した地上 気圧データの正のバイアスによってアマゾンの地 上に繰り返し高気圧を形成したことが原因となっ ている。対処療法的な方法ではあるが、JRA-55で はアマゾン域の地上気圧データを全面的に使用し ないことによって、地上付近が乾燥することを防 いでいる。

また、JRA-25、JRA-55 ともに熱帯全域で正バ イアスを示しており、降水を過大評価する傾向に ある。JRA-55の熱帯降水量はJRA-25より増加し ており、他センターの再解析データと比較しても 最も多い。これは積雲対流スキームの系統誤差に 起因するとみられる。

次に、降水分布の再現性を評価するために、GPCP 降水量に対する全球アノマリ空間相関の時系列を 図3に示す。MERRA、CFSR、ERA-Intrimはかな りよい相関を示しているが、JRA-55はそれに次ぐ 結果となっている。

最後に、海域ごとの熱帯低気圧検出率を表2に 示す。算出方法は Hatsushika et al. (2006)を参考

図 3: 各再解析の全球平均日降水量と GPCP のアノマ リ空間相関の時系列。

	Western	Eastern	North	North	South	South	Global
	North	North	Atlantic	Indian	Indian	Pacific	
	Pacific	Pacific					
JRA-55	93	92	90	84	94	95	93
JRA-25	88	98	98	72	82	85	89
ERA-Int	76	37	67	56	64	73	65

表 2: 各海域における熱帯低気圧検出率 [%]。1980 ~1998年の JRA-55、JRA-25、ERA-Intrim につい て算出した結果。

にしている。JRA-55の熱帯低気圧検出率は全球で 93%、南太平洋で最大検出率95%、北インド洋で 最小検出率84%と領域によらず安定して熱帯低気 圧の再現性が良い。JRA-25からは全球で4%の向 上がみられる。疑似熱帯低気圧周辺風を使用して いるJRA-25およびJRA-55に対して、ERA-Intrim は疑似データを使用していないため、相対的に検出 率が低い。JRA-55の熱帯低気圧の中心は、300hPa 付近で気温偏差が最大となっている(図略)。こ の結果は Hawkins and Rubsam (1968)の先行研究 と整合するが、中心気温は過小評価されている。

4. JRA-55 の潜熱加熱

4.1 TRMM SLH にみられる熱帯域の加熱の鉛直 構造

再解析データの加熱を検証する前に、熱帯域の 潜熱加熱の鉛直構造と大規模循環場との関係につ いて観測データを用いた先行研究を示す。

Shige et al. (2004, 2007)は、雨と潜熱の関係を3 次元的に対応させた Spectral Latent Heating(SLH) アルゴリズムを開発し、TRMM 降雨レーダ (PR) から熱帯域の潜熱を推定した3次元データ(以下、 TRMM SLH)を作成した。

TRMM SLHを用いて、熱帯域で海上平均した 潜熱プロファイルを図4に示す(Takayabu et al. 2009)。対流性加熱(赤線)は下層にピークをも つプロファイルとなり、層状性加熱(青線)は下 層の冷却と上層の加熱からなるプロファイルを示

図 4: TRMM SLH にみられる熱帯域(20°N-20°S)海 上平均の潜熱 [K/dy] の鉛直プロファイル。縦軸の高度 は km。赤線は対流性加熱、青線は層状性加熱、灰色は トータルした潜熱加熱。Takayabu et al. (2009)の fig.1 より。

図 5: TRMM SLH にみられる熱帯域(30°N-30°S)の 500hPa 鉛直 P 速度に対する潜熱平均値の鉛直プロファ イル。横軸は 500hPa 鉛直 P 速度 [hPa/dy]、縦軸は高 度 [km]、潜熱平均値をカラーで示す。Takayabu et al. (2009)の fig.11 より。

す。それらをトータルした潜熱(灰色)は8km付 近の対流圏上層と、2km付近の下層に2つの正の ピークをもつプロファイルとなる。この対流圏上 層の top-heavy なプロファイルはウォーカー循環 の形成にとって重要であることが指摘されている (Hartman et al. 1984)。

また、Takayabu et al. (2009)は、TRMM SLHの 潜熱と大規模鉛直流場との関係を、500hPa 鉛直 P 速度に対して降水条件下での潜熱平均値の鉛直プ ロット図を用いて説明している(図5)。上昇流域 の深い加熱と下降流域で上から抑制された浅い加 熱の2つのモードが顕著で、深い加熱から浅い加 熱への入れ替わりは大規模鉛直流に強く支配され ていることがわかる。

図 6: 各再解析にみられる熱帯(20°N-20°S)の海上平 均の潜熱[K/dy]の鉛直プロファイル。赤線は対流性加 熱、青線は層状性加熱、黒線はトータルした潜熱加熱。

4.2 再解析にみられる熱帯域の加熱の鉛直構造 検証には以下の再解析データを用いた。

- NCEP2 (Kanamitsu et al. 2002)
- CFSR (Saha et al. 2010)
- MERRA (Rienecker et al. 2011)
- JRA-25 (Onogi et al. 2007)
- JRA-55 (Ebita et al. 2011)

JRA-25 の積雲対流スキームは、マスフラック ス型 Arakawa-Schubert スキームで、その他に層積 雲スキーム(Kawai and Inoue 2006)を導入して いる。この層積雲スキームにより、JRA-25 は大陸 西岸沖における層積雲の分布がよく再現されるこ とが示されている(Onogi et al. 2007)。JRA-55 では、JRA-25 の積雲対流スキームに深い積雲対 流におけるトリガー関数を導入する改良を施して いる。その他は特に著しい変更が行われていない が、3次元変分法から4次元変分法への変更もあ り、JRA-25 と JRA-55 の降水の比較からその違い を理由づけるのは難しい。

各再解析データにみられる熱帯域(20°N-20°S) で海上平均した潜熱プロファイルを図6に示す。

潜熱に着目すると、それぞれ2つのピークを再 現しているが、どの再解析も浅い加熱は過大評価 している。潜熱を対流性と層状性に分けてみてみ ると、TRMM SLH と各再解析でプロファイルが 大きく異なっていることがわかる。これは、対流 性か層状性かの分類のされ方が、TRMM SLH の アルゴリズムと予報モデルのパラメタリゼーショ ンで異なるためである。例えば、SLHアルゴリズ ムではアンビルに伴う加熱を層状性加熱として分 類しているが、予報モデルの積雲対流パラメタリ ゼーションでは、積雲対流からの雲水のデトレイ ンメントをアンビルとして考慮するため、その凝 結は対流性加熱に含まれる。以上のことから、再 解析データの対流性加熱と層状性加熱を利用する 際は注意が必要である。

 $\omega 500$ に対する潜熱平均値の鉛直プロファイルを 図 7 に示す。どの再解析も 2 モード的構造をある 程度は再現している。図 5 の TRMM SLH と比較 すると、JRA-55 は上昇流域の浅い加熱が顕著で、 $\omega = 0$ を境にみられる深い加熱から浅い加熱への ω 依存性が再現できていない。また、他再解析に も同様の傾向がみられる。

再解析間のばらつきが最も大きいのが、900-800hPa の対流圏下層である。水平方向で再解析間のばら つきを調べるため、900-800hPaで平均した再解析 アンサンブルをとり、再解析間標準偏差が 1σ を 超えたところをみると、ITCZ やペルー沖、アラ ビア海などで、ばらつきが大きいことがわかった (図略)。以下では ITCZ 域とペルー沖に着目し、 再解析間の比較を行った。

ハドレー循環の下降流域にあたる大気境界層で は、強い下降流による抑制を受け、層積雲系の浅 い雲によって覆われることが知られている。図8 に示した9月気候値の10°Sの経度断面図をみる と、どの再解析でも東部太平洋および大西洋の下 降流域で浅い加熱が表現されている。その中でも JRA-55 は、他再解析に比べ TRMM SLHの分布 (Takayabu et al. 2009のfig.8を参照)に最も近い。 下降流域の浅い対流がいかにして再現されるかに ついては、積雲対流パラメタリゼーションの中の 乾燥空気のエントレイメントが効果的に寄与して いると考えられる。下降流域で現実的な対流抑制 が働かず深い対流が卓越してしまう double ITCZ の問題はどの再解析にも認められず、抑制された 浅い加熱分布を再現できている。

一方、NCEP2、CFSR、MERRA は大気境界層 上端で顕著に下層雲が広がり、浅い加熱がシャー プにみられる。特に、CFSR や MERRA は大陸西 岸沖(ペルー沖、アンゴラ沖)の潜熱が強く発生 し、再解析間で表現の違いが大きい。

最後に、900-800hPaで潜熱のばらつきが大きかった ITCZ 領域に着目し、9月気候値の東太平洋(90°W-150°W)で東西平均した緯度断面図を図9に示す。JRA-55は先述したように熱帯降水量を過剰に表現する傾向にあるが、図9から、特に ITCZの下層で潜熱が過大評価されていることがわかる。また、潜熱プロファイルのピークの位置に着目すると、再解析間で極大値に違いがみられる。Johnson et al. (1999)は、観測から浅い積雲・雄大積雲・深い

図 7: 各再解析にみられる熱帯域(30°N-30°S)の 500hPa 鉛直 P 速度に対する潜熱平均値の鉛直プロファイル。 横軸は 500hPa 鉛直 P 速度 [Pa/s]、縦軸は高度、潜熱平均値をカラーで示す。

図 8:9月気候値の 10°S における経度断面図。カラーが潜熱 [K/dy]、ベクトルが東西鉛直流(見やすさのため鉛 直流は拡大されている)。

図 9:9月気候値の 90°W-150°W で平均した緯度断面図。カラーが Q1-QR[K/dy]、ベクトルが南北鉛直流(見やす さのため鉛直流は拡大されている)。

積雲の3つ高度にピークが存在することを指摘しているが、どの再解析も深い積雲に対応するピークは確認できるものの、浅い積雲・雄大積雲に対応 するピークの位置や強度の再現があまりよくない。

Zhang et al.(2004)は、東部太平洋の循環場につ いて、ITCZ の熱源に駆動されるハドレー循環に 加え、ITCZ 域の浅い対流によって背の低い南北循 環が形成されることを観測データから指摘した。 この浅い対流による南北循環に着目すると ERA-Intrim、CFSR、JRA-55 ではうまく表現しているこ とが確認できる。

5.まとめ

気象庁気候情報課では 1958 年以降を対象とした第二次長期再解析 JRA-55 を実施中である(初

期結果をまとめた中間報告 Ebita et al. 2011を参 照)。2013年秋の公開に向け、2012年11月20日 の時点で49/55が完了している。JRA-25では成層 圏の気温バイアスが問題となっていたが、JRA-55 では新長波放射スキームの導入により、下部成層 圏の低温バイアスが軽減された。降水に関しては、 JRA-25 でみられた熱帯降水量を過大評価すると いう課題は残っているものの、降水分布の精度は JRA-25 より向上し、各再解析の中でも比較的良い 成績である。また、JRA-25 にみられたアマゾンの 乾燥化も軽減されている。

潜熱について他再解析データとの比較や、衛星観 測データによる検証を行った結果、JRA-55の潜熱 の特徴として以下のものが挙げられる。Takayabu et al. (2009) で指摘された 2 ピーク& 2 モードの鉛 直構造をある程度再現している。下降流域の浅い 加熱はどの再解析も十分に表現されているとは言 えないが、JRA-55 は亜熱帯下降流域の層積雲によ る加熱が TRMM-SLH に最も近い表現をしている。 また、ITCZ において降水に伴う加熱が過大評価さ れ、特に浅い加熱が過剰である。一方で Zhang et al.(2004) で指摘された浅い対流による南北循環は よく表現できている。

参考文献

- Adler, R. F., and Coauthors, 2003: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis(1979-present). J. *Hydrometeor.*, 4, 1147 - 1167.
- Ebita, A., and Coauthors, 2011: The Japanese 55year Reanalysis "JRA-55": An Interim Report. *SOLA*, **7**, 149-152.
- Hartmann, D. L., H. H. Hendon and R. A. Houze, Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. *J. Atmos. Sci.*, **41**, 113-121.
- Hatsushika, H., J. Tsutsui, M. Fiorino, and K. Onogi, 2006: Impact of wind profile retrievals on the analysis of tropical cyclones in the JRA-25 reanalysis. *J. Meteor. Soc. Japan*, 84, 891-905.
- Hawkins, H. F., and D. T. Rubsam, 1968: HURRI-CANE HILDA, 1964. *Mon. Wea. Rev.*, **96**, 617-636.
- Johnson, Richard H., Thomas M. Rickenbach, Steven A. Rutledge, Paul E. Ciesielski, and Wayne H. Schubert, 1999: Trimodal Characteristics of Tropical Convection. J. Climate, 12, 2397-2418.
- Kanamitsu, M., and Coauthors, 2002: NCEP-DOE AMIP-II reanalysis(R-2). *Bull. Amer. Meteor. Soc.*, **83**, 1631 - 1643.
- Kawai, H., and T. Inoue, 2006: A simple parameterization scheme for subtropical marine stratocumulus. SOLA, 2, 17-20.
- Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, **85**, 369-432.
- Rienecker, M. M., and Coauthors, 2011: MERRA
 NASA 's modern-era retrospective analysis for research and applications. *J. Climate*, 24, 3624 3648.
- Saha, S., and Coauthors, 2001: The NCEP climate

forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015 - 1057.

- Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of latent heating profiles from TRMM PR data. Part I: Development of a model-based algorithm. *J. Appl. Meteor.*, 43, 1095-1113.
- Shige, S., Y. N. Takayabu, W.-K. Tao, and C.-L. Shie, 2007: Spectral retrieval of latent heating profiles from TRMM PR data. Part II: Algorithm improvement and heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 1098-1124.
- Takayabu, Y. N., S. Shige, W.-K. Tao, and N. Hirota, 2009: Shallow and Deep Latent Heating Modes over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data. J. Climate, 23, 2030-2046.
- Tao, W.-K., S. Lang, J. Simpson, and R. Adler, 1993: Retrieval algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. *J. Meteor. Soc. Japan*, **71**, 685-700.
- Tao, W.-K., S. Lang, J. Simpson, W. Olson, D. Johnson, B. Ferrier, C. Kummerow, and R. Adler, 2000: Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving vodel, SSM/I, and ship-borne radar data. J. Meteor. Soc. Japan, 78, 333-355.
- Zhang, C., M. McGauley, N. A. Bond, 2004: Shallow Meridional Circulation in the Tropical Eastern Pacific. J. Climate, 17, 133-139.