成層圏突然昇温時の TTL 内の力学過程の変化について -全球非静力学モデルデータの解析-

江口菜穂 (九大・応力研)、小寺邦彦 (名大・STE、三重大)、那須野智江 (JAMSTEC)

1 はじめに

これまで主に観測データを用いて、1週間以 内の成層圏の現象である突然昇温現象 (Stratospheric Sudden Warming; SSW) に着 目し、成層圏と対流圏の力学的結合過程を調 べてきた [Eguchi and Kodera, 2007; 2010]。 そ の結果、SSW オンセット後に熱帯域の積雲 対流活動が活発となり、大規模循環場が (Walker 循環から Hadley 循環に)変化する ことが示された。また熱帯域の Brewer-Dobson 循環の上昇流強化による下部成層圏 および熱帯対流圏界面遷移層 (Tropical Tropopause Layer; TTL) の断熱的な降温と、 それに伴う TTL 内の巻雲の増加や水蒸気量 の減少が確認された。しかし、客観解析デー タや衛星観測データの鉛直分解能が粗いこ とや、鉛直流や非断熱加熱の観測データがな いことから、SSW 時の成層圏力学場の対流 圏力学場(積雲対流活動等)に与える影響 の詳細はこれまで明らかにされていない。 本研究では、積雲対流パラメタリゼーション

を利用していない Non-hydrostatic global model (NICAM) [Satoh et al., 2008] の出力値 を用いて、SSW 時の特に TTL 内の力学過 程に着目して解析した結果を示す。

2 データ

解析には NICAM で計算された、2009年12 月 20 日から 2010年2月14日の3時間間隔 の瞬間値 (2次元データは1時間間隔の平均 値)を利用した (計算条件の詳細は表1を参 照)。水平解像度は14kmを1度グリッドデ ータに変換し、また1日平均値データを作成 して解析に用いた。本内挿作業による結果へ の影響はない。鉛直方向には40層(0-38km; stretching grid)で、TTL付近(10-20 km)は 約9層(約120m間隔)存在する。 使用した物理量は、気温、鉛直風、東西風、 南北風、比湿、雲水量、雲氷量(雪、霰を含 む)、非断熱加熱率(雲物理と放射寄与の両 方)、雲量*、降水量*(*2次元データ)を用 いた。非断熱加熱率、降水量データのみ一日 積算量を解析に用いた。

3 結果

3.1 NICAM 内で再現された SSW

図1(a, b) に極域と熱帯域の気温と 100 hPa 中緯度での eddy heat flux (v'T') の時系列を 示す。1月7日から v'T' が徐々に強まり、 それに合わせて、北極域で昇温、逆に熱帯域 で降温がみられる。NICAM 内で再現されて いた SSW を現実大気 (図 A) と比較する と、昇温が約5日早く、継続期間も数日長 い。図1(c) より、熱帯域の降温は、1/15頃 南半球で開始している。南半球で降温がみら れる期間を遷移期(ii)とし、その前後7日 間をそれぞれ(i) プレオンセット期、(iii) 成熟期(mature)と設定した。また図1(d) より、期間(ii)では、雲活動が南半球に移 動し、期間(iii)で期間(i)よりも雲活動が 活発となっている。

図2に雲活動の経度方向の変化を示す。期間 (i) では、主に西部太平洋上で積雲対流活動 が活発であり、期間(ii) ではその活発域が 南に移動し、北半球側の熱帯収束帯が弱まっ ている。またインド洋西部で台風が発生、発 達している。鉛直方向に着目すると (図 2 (c, d))、西部太平洋上と西部インド洋上で TTL 内に貫入する積雲対流 (台風) が活発にな っていること、また下部成層圏 (100 hPa よ りも上空) で上昇流が経度方向一様に見ら れることがわかる。

3.2 対流圏内の南北循環場の変化

図 3 (a) に解析期間中、熱帯域下部成層圏 (70 hPa) の鉛直流と相関の高い鉛直流の緯 度、高度を示す。SSW 期間中、TTL 内と南 緯 20 度-10 度で対流圏下層から TTL にか けて相関が高い領域がみられる。この領域で は雲が活発となり (図 3 (b))、また対流圏下 層の水蒸気が収束している (図 3 (c))。TTL 内では、降温によって乾燥がみられ、期間 (ii) では、気温偏差が赤道非対称であるため (図 1 (c))、低緯度南半球側に乾燥偏差がみら れている。期間 (iii) では、降温域が赤道対 称構造となり、乾燥域も赤道対称の構造とな っていた (図省略)。

3.3 成層圏シグナルの下降伝搬

図 4 (a,b) に気温の時間変化率 $\frac{\partial T}{\partial t}$ と静的 安定度 $\frac{g}{\theta} \frac{\partial \theta}{\partial z}$ 、鉛直流の時間高度断面を示す (*T* は気温、 θ は温位、g は重力加速度)。 期間 (ii) に低温偏差と不安定域が TTL 内 を下降している様子が見られる。また上昇流 偏差も同じ時期と高さで下降している。これ は、熱力学のバランスの式

 $\frac{\partial T}{\partial t} = -N^2 w^* + Q_d \qquad (1)$

を用いて解釈できる。 N^2 はブラントバイサ ラ振動数、 w^* は残差鉛直流、 Q_d は非断熱加 熱率(放射、潜熱等)を表す。(詳細には右辺 に波、渦による南北、鉛直方向の輸送、拡散 効果が加わる。)図4(d, e)に(1)式の高度 20 km (下部成層圏)と 14 km (TTL 下端) の各項の時系列を示す。高度 20 km (図 4 (d)) では、中緯度の波の上方伝播の強まり (図 4(c)) による熱帯域の上昇流 (w^*) の強化 によって、断熱的な降温 ($\frac{\partial T}{\partial t}$ <0) が支配され ているのに対し、 14 km では (図 4 (e))、上 昇流による断熱加熱項と放射と雲形成 (潜 熱加熱) による非断熱加熱率項がバランス し、そこでの気温変動を決めている。TTL 内では、上方から徐々に成層圏の断熱効果が 弱まり、対流圏的になっていた (図省略)。

4 まとめ

NICAM を用いて、SSW 期間の TTL 内の 成層圏と対流圏の力学場の結合過程につい て調べた。期間中、熱帯下部成層圏 (70 hPa) の鉛直流と、南半球低緯度の対流圏下層から TTL までの鉛直流の相関が良かった。また SSW に伴う熱帯下部成層圏の上昇流の強化 による断熱的な降温、それによる静的安定度 の弱まりが、徐々に下降している様子を捉え た。この上昇流偏差の下降が、TTL 下端に到 達した際、対流圏の上昇流 (積雲対流) の活 発域と結びつき、結果的に対流圏の積雲対流 活動域を南に移動させ、SSW オンセット前 よりも活発化させていた。

謝辞

本研究は、科研費若手 (B)(#23710025)と基盤 (C)(#25340010)の補助を受けている。

参考文献

- Eguchi and Kodera (2007) *GRL*, DOI: 10.1029/2006GL028744
- Eguchi and Kodera (2010) SOLA, DOI:10.2151/sola.2010-035
- Satoh et al. (2007) *J. Computational Physics*, DOI:10.1016/j.jcp.2007.02.006
- Ueyama et al. (2013) *JAS*, DOI: http://dx.doi.org/10.1175/JAS-D-12-0174.1

Horizontal grid spacing	14 km
Vertical domain	0 m ~ 38,000 m, 40-levels (stretching grid)
Integration	60 days from 20 Dec 2009 to 14 Feb 2010
Initial conditions	Interpolated from NCEP tropospheric analyses (6 hourly, 1.0 degree grids)
Boundary conditions	SST(slab ocean model), Sea ICE (weekly data), ETOPO-5 topography,
	Matthews vegetation, UGAMP ozone climatology (for AMPI2)
Shallow clouds Boundary layer	Mellor-Yamada level 2 (Mellor and Yamada 1982; Noda et al. 2010]
Cloud microphysics	Moist convection, no cumulus parameterization NSW6 [Tomita, 2008]
Radiation	MSTRNX [Sekiguchi and Nakajima, 2008]

表1:本研究で用いた NICAM 計算条件

図1:(a) 北半球中高緯度 (60N-90N) と熱帯域 (15S-15N) の気温 [K] と (b) 100hPa 北半球中 緯度 (45N-75N) の v'T' [m/s K] の時系列。(c) 気温偏差 [K] (緯度 90S-90N) と (d) 全雲量 (緯度 30S-10N)の時間緯度断面。縦点線は期間 (i)オンセット前 (pre-condition), (ii)遷移期 (transition), (iii) 成熟期 (mature) を表す。(c) 内のコンターは 2K 間隔。全て 1/1~31。

図2: (a, b) 雲生成による非断熱加熱率 [K/day] の水平分布。(c, d) 20S-10S 平均した鉛直流 [m/s] の経度高度断面。(a, c) 期間 (i)、(b, d) 期間 (ii)。(c, d) 内の横点線は TTL (150hPa, 85hPa) を示す。

図3:緯度高度断面 (a) 70hPa 熱帯域 (20S-20N) 平均した鉛直流と各緯度・高度における鉛直 流との相関係数。期間 1/7-26。(b) 雲形成による非断熱加熱率 [K/day]。(c) 水蒸気量 [10⁻⁶kg/kg]。 (b,c) 絶対値をコンターで、期間 (i) からの偏差をカラーで示す。(b) コンターは 10⁻³⁺ⁱ (i=0,1,2) [K/day]。(c) コンターは 10⁴×10^{i/3} (i=0,1,2,···,10) [10⁻⁶ kg/kg]、太破線は 4.6 と 100 [10⁻⁶ kg/kg]。

図4: (a) 気温の時間変化率 [K/day] (カラー)、 static stability の時間変化率 -0.02 [10⁻⁴ s⁻²/day] (コンター) と (b) 規格化した鉛直流の時間高度断面。(c) v'T'の時系列 (図 1(b) と同じ)。(d, e) 熱力学バランスの時系列 (20S-5N 緯度帯平均)。黒線; $\partial T / \partial t$ 、青線; -N²w^{*}、赤線; 非断熱加 熱率 Q_d (雲形成と放射過程)。

図A: ERA-interim による極域の(a) 気温、(b) 熱帯域の気温、(c) 100hPa 中緯度の v'T'、(d) 3 日間移動平均、経度平均した OLR (外向き赤外放射) [W/m²] の時間緯度断面。全て 1/1-2/11。