成層圏力学場による深い対流雲の発達への影響

江口菜穂(九大・応力研) 那須野智江 (JAMSTEC) 小寺邦彦(名大・宇宙地球環境研)

1 はじめに

筆者らはこれまで、成層圏の短期現象で ある 突 然 昇 温 現 象 (Stratospheric Sudden Warming; SSW) に着目し、成層圏と対流圏 の力学的結合過程を調べてきた [Eguchi and Kodera, 2007; 2010; Kodera et al., 2011; 2015; Eguchi et al., 2015; 2016]。他方、準二年周期 振動 (Quasi-biannual Oscillation: 以後 OBO) によっても熱帯域の積雲対流活動が影響を 受けていることが統計的に明らかになって きた [Yoo and Son, 2016; Nishimoto and Yoden, 2017]。いずれの成層圏現象も、熱帯下部成層 圏の鉛直流の変化にともなう気温偏差、およ び南北循環の変化によって、TTL および上部 対流圏に影響を与えていることが示唆され る。このように近年、成層圏から対流圏への 影響を定量的に理解する重要性が国際的に も認識され始め、国際的枠組み「成層圏過程 とその気候への影響計画 (SPARC)」の新興 課題として SATIO-STC (Stratospheric And Tropospheric Influences On Tropical Convective Systems;「成層圏と対流圏の熱帯対流システ ムへの影響」)が2016年に立ち上げられた。

Eguchi et al. [2015] (以後 E15) は、積雲対 流パラメタリゼーションを用いない全球非 静力学モデル Non-hydrostatic global model (NICAM) [Satoh et al., 2008] の出力値を用い て、SSW 時の特に TTL 内の力学過程に着 目して解析した結果、SSW 時に成層圏の南 北 (Brewer- Dobson; BD) 循環の上昇流強化 による下部成層圏および熱帯対流圏界面遷 移層 (Tropical Tropopause Layer; TTL 高度 14~20 km)の断熱的な降温と、それによる 静的安定度の弱まりが、徐々に下降している 様子を捉えた。この上昇流偏差の下降が、 TTL 下端に到達した際、対流圏の上昇流 (積 雲対流)の活発域と結びつき、結果的に対流 圏の積雲対流活動域を SSW 開始前よりも 活発化させていた。しかしながら、詳細な積 雲対流の発達メカニズムはいまだ明らかに されていない。そこで本稿では、E15 で着目 した1月のSSW時期にインド洋南西部で発 達した積雲対流活動について調べた結果を 報告する。

2 データ

解析には NICAM で計算された、2009 年 12 月20日から2010年2月14日の3時間間隔 の瞬間値 (2次元データは1時間間隔の平均 値)を利用した (計算条件の詳細は表1を参 照)。水平解像度は 14 km を 1 度グリッドデ ータに変換した。鉛直方向には 40 層 (0~ 38km; stretching grid) で、TTL 付近 (10~20 km) は約9層(約120m間隔)存在する。 使用した物理量は、3次元データの気温、鉛 直風、東西風、南北風、比湿、雲水量、雲氷 量 (雪、霰を含む)、非断熱加熱率 (雲物理と 放射寄与の両方)、また2次元データ(1時間 値)の雲量、降水量、可降水量、蒸発量、大 気上端での長・短波放射輝度を用いた。非断 熱加熱率、降水量データのみ一日積算量を解 析に用いた。なお、E15 において、NICAM 内 で発生した 2010 年 1 月の SSW は現実に比 ベ昇温が約5日早く発生し、これに対応し て熱帯域の降温も現実大気より早く開始し ている。また昇温の継続期間も数日長い。

3 結果

3.1 インド洋南西部の対流圏中・下層の様子

図1に積雲活動と対流圏下層の水蒸気収 束の1日毎の水平分布を1月9日から14日 の期間について示す。この期間はインド洋南 西部(東経50-80度、南緯20度~赤道)にお いて、TTLの気温が下降を始め、積雲対流が 発達する遷移期に相当している。1月9-10 日では、陸上を除き、孤立した雲域(グリッ ドスケール)がランダムに発生している。11 日以降は雲水量が増加し、南緯10度付近で 東西に幅広く分布する。

水蒸気収束をみると(図1下段)、雲域と 同様に期間前半は水蒸気の収束および発散 域がランダムであったが、11日以降に南緯 10度に沿って主に北からの水蒸気輸送によ る収束帯が現れていた。台風に発達する前の 渦と考えられる水蒸気収束の回転が、9日か ら確認され、11日以降それに伴う水蒸気フ ラックスの回転成分の強度が増している様 子が見られた。9日では、渦の中心が東経65 度、南緯 11 度付近、12 日では東経 58 度、南 緯 11 度付近に西に移動し、13 日では東経 60 度、14 日では台風に発達し南緯 14 度付近に 南下していた。図1に渦中心に×印をつけて いる。

図2 にインド洋全域の可降水量と対流圏 下層の水蒸気フラックスを示す。着目してい る領域(東経 50~80度、南緯 20度~赤道) で、1月11日に南緯10度帯に積雲対流域が インド洋全域にみられ、そこから台風が発生 している様子がうかがえる。またインド洋西 部から中部にかけて、その雲域に向かって南 向きの水蒸気フラックスがみられる。

3.2 TTL 内の変化

図3 に高度17 km (TTL上部)の気温および 雲氷量を示す。また図4に着目領域内で平均 した気温および雲氷量の時系列を示す。これ らから10日以降に南緯20度以北の全域で 気温が下がっている(領域平均では2度以 上)。また氷雲が低温域上で形成されている。 氷雲量の増加は10日以前にみられており、 10日以降の気温低下による氷雲量の変化は 認められない。14日の台風中心付近では、氷 雲の形成による昇温がみられる。TTL中層の 15 km も同様の特徴がみられた。

3.3 成層圏シグナルの下降伝搬

図 5 に気温の時間変化率 $\partial T/\partial t$ と静的安定度 $g/\theta \cdot \partial \theta/\partial z$ 、鉛直流の時間高度断面の 期間平均からの偏差を示す (T は気温、 θ は 温位、g は重力加速度)。1月7日頃、高度 20 km から上昇流偏差域が下降し、14日頃に高 度 15 km に到達している。上昇流偏差の下降 にともない、気温の時間変化率 $\partial T/\partial t$ の負 の領域も同様に上部成層圏から TTL に下降 をしている。ここで静的安定度に着目すると、 安定度の弱い領域が対流圏下層から中層に かけて数日間隔で現れている。図中 A の安 定度の弱い領域は、対流圏下層から高度約15 km まで、一方 B の安定度の弱い領域は、高 度 20 km まで到達し、上方の安定度の弱い 領域と結合しているようにみえる。

期間 A と B の違いは、成層圏からの低温 偏差の下方伝播が TTL 内部に到達した場 合でかつ対流圏内の安定度が弱い時、対流圏 下層から TTL 内まで安定度の弱い領域が 連続となり、積雲がより上方に到達できるこ とを示している。

期間 A と B の雲の到達高度はそれぞれ約 11 km と 15 km 以上 <u>(</u>TTL 以高) に到達していた (図省略)。

4 まとめと考察

NICAM の数値実験データを用いて、SSW 期間中にインド洋南西部で発達した積雲活 動について調べた。下部成層圏から TTL に おける上昇流の強化とそれに伴う気温の下 降が、積雲対流の上方への発達に影響を与え ていることが示された。この特徴は、E15 で 示された熱帯平均の描像と同じであったが、 より安定度の弱い領域が成層圏からの降温 偏差を結合する過程の詳細が明らかとなっ た。但し、以下の点が今回の解析では明らか となっていない。(1) インド洋南西部での降 温偏差の下降が、SSW に伴う上昇流が原因 であったのか、SSW 発生数日前にマダガス カル近辺で発達した積雲による波の影響で あったのか、切り分けが難しい。(2) SSW に ともなうBD循環の経度非一様性および対流 圏の状態 (安定度等) が、積雲対流の発達に どう影響するのかが不明である。今後、数値 実験等含め突き詰めていく予定である。

謝辞

本研究は、基盤 (C)(#25340010)の補助を受けている。

参考文献

- Eguchi, N. and K. Kodera (2007) *GRL*, 34, L05819, doi:10.1029/2006GL028744.
- Eguchi, N. and K. Kodera (2010) *SOLA*, 6, 137-140, doi:10.2151/sola.2010-035.
- Eguchi, N. et al. (2015) *ACP*, 15, 297-304, doi:10.5194/acp-15-297-2015.
- Eguchi, N. et al. (2016) *SOLA*, 12A, 13-17, http://doi.org/10.2151/sola.12A-003.
- Kodera, K., et al. (2011) *JMSJ*, 89, 283–290, DOI:10.2151/jmsj.2011-308.
- Kodera, K. et al. (2015) *ACP*, 15, 6767-6774, doi:10.5194/acp-15-6767-2015.
- Nishimoto, E. and S. Yoden (2017) *JAS*, 74, 1105-1125, DOI: 10.1175/JAS-D-16-0205.1.
- Satoh, M. et al. (2008) *JCP*, 227, 3486–3514, doi:10.1016/j.jcp.2007.02.006.
- Yoo, C. and S.-W. Son (2016) *GRL*, 43, 1392–1398, doi:10.1002/2016GL067762.

Horizontal grid spacing	14 km
Vertical domain	0 m ~ 38,000 m, 40-levels (stretching grid)
Integration	60 days from 20 Dec 2009 to 14 Feb 2010
Initial conditions	Interpolated from NCEP tropospheric analyses (6 hourly, 1.0 degree grids)
Boundary conditions	SST(slab ocean model), Sea ICE (weekly data), ETOPO-5 topography,
	Matthews vegetation, UGAMP ozone climatology (for AMPI2)
Shallow clouds Boundary layer	Mellor-Yamada level 2 [Mellor and Yamada 1982; Noda et al. 2010]
Cloud microphysics	Moist convection, no cumulus parameterization NSW6 [Tomita, 2008]
Radiation	MSTRNX [Sekiguchi and Nakajima, 2008]

表1:本研究で用いた NICAM 計算条件

図1:インド洋南西部 (東経 30 度~80 度、南緯 30 度~北緯 5 度) における (上) 高度 5.1 km の雲水量と (下) 高度 100 m の水蒸気収束量と水蒸気フラックス。渦中心は×印。下段の領域 は南緯 20 度から赤道、東経 50 度から東経 80 度 (上段の黒枠内)。

図2:可降水量と水蒸気フラックス (高度1km)の水平分布。1月8日から13日までの一日 平均値。

図3:図1と同じ。ただし、高度17kmでの(上)気温と(下)雲氷量。

図4:高度 17km における気温(左)と雲氷量(右)の時系列。黒線は、南緯20度から赤道、 東経50度から東経80度の領域平均、図3の黒枠内に相当。赤線は熱帯(南緯20度〜赤道) 平均値。青線は熱帯平均からの偏差+2.5[10⁻¹³kg/kg]。

図 5:(左) 各高度の標準偏差で規格化した鉛直流の時間高度断面。(右) 気温の時間変化率 [K/day] の期間平均からの偏差 (カラー)、および静的安定度 static stability の期間平均からの 偏差 (コンター)。 コンター間隔は -1.0、-0.6 [10⁻⁴ s⁻²/day]。領域は南緯 20 度から赤道、東経 50 度から東経 80 度の平均で、図 3 の黒枠内。