太陽活動の北大西洋域への影響について

気象研究所 黒田友二

1、はじめに

太陽から地球に届く放射は大雑把には長期 間にわたりほぼ一定ではあると考えられて いるが、詳細に見ると日単位の短い時間ス ケールから 1000 年オーダーの非常に長い 時間スケールにわたって変動を繰り返して いることが知られている。その中でも特に 顕著なものは、いわゆる11年周期変動で あり、ほぼ11年の黒点の増減周期に対応 して放射量の強弱が繰り返されている。た だ、その振れ幅は非常に小さく全放射強度 で見て 0.07%程度でしかない。しかし特に 短波長域では11年周期に伴う変動幅は比 較的大きく、短紫外線域では5%程度にも及 ぶようになる。紫外線帯はオゾン加熱に重 要な波長域であるため、太陽活動による放 射変動は成層圏域から対流圏成層圏結合を 介して下方へと影響が及ぶことが考えられ る。このような考え方に基づく太陽活動の 気候への影響は、トップダウンメカニズム と呼ばれている。他方、変動幅でみると非 常にわずかではあるが、全放射変動総量の 半分強は可視光-近赤外域で起きており、 太陽活動が強まっている時は、わずかな放 射の増大はより海洋を暖め、水蒸気蒸発を 活発化させ、そのような水蒸気量の増大が ハドレー循環、ウォーカー循環を強めるよ うな形で海洋を起源として気候に影響を与 えるボトムアップメカニズムという可能性 も提唱されている。これら、トップダウン

メカニズム、ボトムアップメカニズムいず れもそれなりの根拠に基づいて提唱されて いるアイデアで、未だ仮説と呼ぶべき段階 にしかないものの、現在のところ有力視さ れている考え方である(Gray et al., 2010)。 さらに、太陽活動の影響が特に強く見られ る重要な場所のひとつとされているのが北 大西洋域である。そこで、今回はその実態 を詳細に調べるために最新の観測データを 用いて太陽活動の北大西洋域への影響につ いてその実態を調べた。

2、データと手法

2.1 使用データと解析手法 まず、大気場データとしてはヨーロッパ中 期予報センター作成の再解析データ

ERA-Interim (ERAI) (Dee et al., 2011)を 用いた。ただし、上部成層圏において再解 析データは太陽活動に伴う放射変動を考慮 に入れずに作成しているため、5hPa より上 部で 0.4hPa までは各種の衛星観測データ をつないだ。衛星データは、1979年1月か ら 2007 年 6 月までは旧 NMC 成層圏解析 データを、2008年11月から2017年6月 までは NCEP/CPC の上部成層圏解析デー タを使用した。両データ間の欠損期間は Aura 衛星データを用いた。何れも日々の温 度場と高度場が提供され、東西風は高度場 よりバランス風式を用いて計算した。但し、 Aura データと NMC/NCEP データ間には 明瞭なバイアスがあったのでバイアス補正 を NMC/NCEP データに合わせるように施 した。海面水温および海洋データは気象庁 の月ごとの観測データを用いた。最後に太 陽活動の指標としては、カナダオタワの観 測所による波長 10.7cm のラジオ波の放射

強度 F10.7 を用いた。なお。この指標は全 放射強度や紫外線強度の変動とよく相関す ることが知られている。すべてのデータは 月平均ないしは冬季平均(DJF 平均)して 用いた。

太陽活動に伴う気候変化を抽出する手法と しては、7月-翌年6月平均の冬季を中心 とする年平均のF10.7を元にしたラグ単回 帰解析を用いた。年平均化した理由は11年 変化のスケールの太陽活動の変化に対応し た気候変化を見たいがためである。使用し たデータの期間は1979/80年から2016/17 年の38冬分である。ただ、ラグが負の年で は今の段階で将来の太陽活動が不明である ため、例えばラグ-2年なら2年分だけ短 いデータで計算している。ラグが正または 0の場合は過去分の太陽活動データを参照 し、データ短縮はしていない。

2.2 PJO と PJO 指数

冬季における成層圏対流圏結合の力学的結 合は、対流圏成層圏にまたがる変動である 極夜ジェット振動(PJO)によって引き起こ される。PJO は東西風偏差でみると時間と ともに極向き下向きに動くやや複雑な変動 であるが、極点における温度場偏差の鉛直 分布の主成分を用いると比較的簡便に表す ことができる(Kuroda and Kodera, 2004)。 ここでは PJO を定義するのに ERAI の 11 月から4月の温度偏差場を用いた。図1の 上段は極点温度の EOF1 と 2 の鉛直分布を 表しており、両者で全温度変動の約90%を 捕らえている。図の下段はそれぞれの成分 の帯状平東西風への回帰を示したものであ る。PJO の時間発展は、これらの時係数を x、y座標とする点の時間変化で表現され、

一般には半時計周りに進む。

図1 11月から4月までの極域80-90N 平均した温 度偏差場の(上段)EOF 第1(左)および第2モード (右)。横軸は温度(単位 K)で縦軸は気圧(単位 hPa)。 下段は、温度場 EOF 1、2の時係数で回帰した帯状 平均東西風の回帰場。横軸は緯度で赤道(左端)か ら 80N(右端)までをあらわしている。コンター間隔 は 2m/s で破線は負値を表している。正負 5m/s 以 上にハッチをかけている。

3、結果

図2はラグ0年において、(左から右へ11 から3月までの)各月ごとの(上段)温度偏差、 (中段)温度の南北勾配、(下段)帯状平均東西 風のF10.7に対する回帰係数である。薄い (濃い)影を掛けたところが統計的に 95(98)%で有意な領域である。 まず11、12月の成層圏界面付近(1hPa付近) の温度場に着目すると、低緯度側ほど温度 が高く50度付近で最低となりそこから極 側は再び温度が上昇している。このうち低 緯度側の有意な温度信号は、日の当たる夏 半球側の太陽活動が高く紫外線が強いため 高温化することに対応した信号を表してい ると考えられる。赤道側の南北温度勾配信 号の統計的有意性は比較的弱いが、極側の 反対符号の信号とは明瞭な南北双極子的構 造を作る(2段12月)。ところで、上部成 層圏における南北の温度勾配は温度風の関 係により、東西風の強弱と符号を除きよく 対応していることが分かる(2段と3段)。 例えば、12月の3hPa付近は50度より赤 道側の温度勾配は負、高緯度側は正である が、それに対応して東西風は10hPa以高の 50度より赤道側で正、高緯度側は負となっ ている。

図2 年平均 F10.7 で回帰した 11 月から 3 月までの(上段)温度偏差場、(中段)温度場の南北勾配、(下段) 平均東西風。横軸は緯度で 15N から 85N を、縦軸は気圧で表した高度であり、1000hPa から 0.4hPa を 表す。コンター間隔は、温度場は 0.3K、温度の南北勾配は 2x10⁻⁷K/m、東西風は 0.5m/s であり、濃い(薄 い)ハッチは統計的に 98(95)%で有意である領域を表す。

東西風偏差場を見ると、このようにしてま ず11月の上部成層圏で正偏差が作られ、こ れが12月に同じ場所で増幅、1月に高緯度 に移動し、2月に下方に伝播しているよう に見える。この時間変化はPJOの典型的な 時間変化(EOF1→EOF2 あるいは-EOF2→ EOF1)によく似ている。つまり、つまり上 部成層圏で太陽活動に伴って形成された信 号が PJO に乗って下方伝播していると考 えられる(Kodera and Kuroda, 2002; Kuroda and Kodera, 2002)。これは従来の トップダウンの見方そのものである。 さて、太陽活動に伴う PJO の時間発展をよ り詳細に調べるために、各ラグ年の各月ご とに年平均 F10.7 に対する PJO の回帰係数 をプロットした (図3)。PJO の時間発展 は 2 次元量で定義されるため、ここでは回 帰 PJO 時係数を位相と振幅に変換してプ ロットした。ここで振幅とは x 軸、y 軸を
それぞれ EOF1 と EOF2 の時係数で張る空
間(PJO 空間)での原点からの距離、位相
は正の x 軸から反時計周りに計った度を単
位とする角度である。

図3 年平均 F10.7 で回帰した位相と振幅の形で プロットした PJO の時係数。縦軸は各月、横軸は F10.7 に対してのラグ年で、例えばラグ+2年は太 陽活動のピークから2年経った年という意味。振 幅は影(スケール右バー)で、位相はコンター(度)で 描かれている。

ところで、過去の PJO と NAO/AO の関係 に関する研究(Kuroda and Kodera, 2004) によると、正の NAO/AO は位相 0 の領域に 現れやすく、また負のそれは位相±180 度 の領域に現れやすい。実際に直接各月ごと の NAO 指数の回帰をプロットしたものが 図 4 である。ラグ 0 年の 2 月ごろに NAO 時係数が 0.4 でピークとなっているが、上 述の先行研究の通り、位相 0 ラインに沿っ て比較的大きな正の値を持っていることが 分かる。

以上のように、太陽活動の11年変動に伴い 上部成層圏から北大西洋域の地表面へと信 号の伝播が起きていると考えられるが、こ

軸は各月、横軸はF10.7に対してのラグ年である。 影は統計的有意性を表し、濃い(薄い)影は統計的に 95(90)%有意な領域を表している。

れらをまとめて一枚の図として表したもの が次の図である。太陽加熱、PJOの位相、 NAOの極性等の諸量が、太陽活動の11年 周期でよく似た変動をしており、どの位相 (ラグ年)においてもお互いに関連し合っ て上部成層圏から地表へと伝播するように 変動していること、即ちトップダウンメカ ニズムのシナリオが良く成立していること を示していると考えられる。

図5 年平均 F10.7 で回帰した各種諸量のラグ年 に対する変化。横軸はラグ年。以下、赤線は DJF 平均した 1hPa 赤道の気温(2倍:単位 K)、黄緑線 は 2hPa 面上 30-40 度平均した-dT/dy(5x10⁶倍:単 位 K/m)、水色線は DJ 平均した PJO 指数の -PC2(20 倍:単位なし)、青線は JF 平均した PJO 指数の PC1(10 倍:単位なし)、黒線は DJF 平均し た NAO 指数(10 倍: 単位なし)である。

さらに下方への影響を見るために、次に海

面水温への影響を調べた。但し海洋の影響 は緩慢なためここでは DJF 平均した SST の回帰を求めている。

図6 年平均 F10.7 で回帰した DJF 平均した海面水温のラグ年に対する変化。ラグ0 年から3 年のみ示した。右肩の数字はこの領域で平均した F10.7 の相関の二乗平均(%)であり、太陽活動の影響度を示す。コンター間隔は0.1K。95%で統計的に有意な領域は存在しない。

NAO 指数で回帰した SST は一般にアメリ カ東岸から東方に楔状に正偏差が広がり、 その南北には負偏差の領域が広がることが 知られている(Hurrell et al., 2003)。しかし、 F10.7 で回帰した SST は NAO 指数が最も 大きくなるラグ0ではなくてラグ+3年で 最も影響度も最大となっている。地表面気 圧で見た NAO と水温である SST とのこの 乖離は海洋による遅延影響を示していると 考えられる。

さらに、海洋内部の DJF 平均した温度について F10.7 との回帰を求めた (図 7)。

すると、SST の三極子構造に対応する北方 海域や南方海域では、統計的有意性は非常 に弱いものの、温度信号は海面から 600m 深まで数年程度かけて深さ方向に伝播して いるのに対して、中央海域であるアメリカ 東岸では、ほとんど遅れなしに深部に伝播 していることが分かる。一般に、太陽活動 に伴う全放射量の増減は海洋水温の高低と して深部へと伝わっていくと考えられる。 特に、その信号伝播速度は海水の沈み込み 速度とも関連すると考えられる。例えば、

図7 年平均 F10.7 に回帰した各海域ごとの DJF 平均海洋温度場。横軸はラグ年、縦軸は深度で海 面から 600m までを表している。三枚のパネルは、 上から下に、50 度-60 度海域、アメリカ東岸の 35 度-45 度海域、南方の 20 度-30 度海域を示し ている(詳しい緯度経度平均情報はパネルの上)。 コンター間隔は 0.03K で負域は破線で示す。統計 的に 95%で有意な領域は存在しない。

グリーンランドの南端あたりは北大西洋深 すると、SST の三極子構造に対応する北方 海域や南方海域では、統計的有意性は非常 に弱いものの、温度信号は海面から 600m 深まで数年程度かけて深さ方向に伝播して いるのに対して、中央海域であるアメリカ 東岸では、ほとんど遅れなしに深部に伝播 していることが分かる。一般に、太陽活動 に伴う全放射量の増減は海洋水温の高低と して深部へと伝わっていくと考えられる。 特に、その信号伝播速度は海水の沈み込み 速度とも関連すると考えられる。例えば、 グリーンランドの南端あたりは北大西洋深 層水の沈み込み帯であり、600m 深までの 遅れが亜熱帯域に比べ比較的小さいのはそ のためなのかもしれない。さらに、中央海 域で遅れがほとんど目立たないのは、深部 との海水の攪拌が比較的早くためかもしれ ない。いずれにせよ、太陽活動信号の海洋 内部への伝播は、海洋による熱慣性の影響 を強く受けていると思われる。

4、結論

太陽活動の 11 年周期変動の指標である太 陽からの 10.7cm ラジオ波強度を指標にし て、最近38冬の上部成層圏から海洋内部 までの観測データについて回帰解析を行う ことにより、太陽活動に伴う信号が各場所 にどのように現れまたそれらが伝播してい るかを調べた。上部成層圏から北大西洋域 の地表面までの太陽活動信号の伝播の仕方 はほぼトップダウンメカニズムのシナリオ でよく理解できることが分かった。つまり、 信号はまずは成層圏界面の低緯度付近の温 度勾配信号を起源とする東西風偏差として あらわれ、それが大気中の自励的変動であ

る極夜ジェット振動のタイミングを自律的 に調整することで、対流圏へと下方伝播し、 地表面には太陽極大年の2月あたりに最も 強い地表面気圧信号としての正の NAO 信 号が現れる。しかし、海面水温(SST)で見る とNAOと対応する南北3極子的構造がピ ークとなるのは、太陽極大年から3年遅れ となった。これは海洋の熱慣性のためと思 われる。さらに海洋内部の温度構造を調べ ると、SST と連動した非常に弱い下方に伸 びる信号が見出された。特に、三極子の南 北域では温度信号は 600m 深まで数年遅れ て伝播する信号が見出されたが、中心域で は顕著な遅れは無かった。したがってこの 海域では、太陽信号はまず海洋内部に入り、 そののち海面を暖めるような信号伝播、す なわちボトムアップ効果の影響を強く受け ている可能性がある。今後この辺をさらに 詳しく調べていく必要がある。

引用文献

- Dee, D. P. *et al.* (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system, *Q. J. R. Meteorol. Soc., 137,* 553–597, doi:10.1002/qj.828.
- Gray, L. J. et al. (2010), Solar influence on climate, Rev. Geophys., 48, RG4001, doi:10.1029/2009RG000282.
- Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, (edit) (2003), *The North Atlantic Oscillation*, Geophysical Monographs, vol. 134, pp. 279, American Geophysical Union, Washington, DC.
- Kodera, K., and Y. Kuroda (2002), Dynamical response to the solar cycle, *J. Geophys. Res.*,

107 (D24), 4749, doi:10.1029/2002JD002224.

- Kuroda, Y., and K. Kodera (2002), Effect of solar activity on the polar-night jet oscillation in the northern and southern hemisphere winter, J. Meteorol. Soc. Jpn., 80, 973-984.
- Kuroda, Y., and K. Kodera (2004), Role of the polar-night jet oscillation on the formation of the Arctic Oscillaton in the northern hemisphere winter, J. Geophys. Res., 109, D11112, doi:10.1029/2003JD004123.